Photon Polarization

T-79.4001 Seminar on Theoretical Computer Science

Visa Putkinen

6.2.2008

Visa Putkinen Photon Polarization

ヘロト ヘアト ヘビト ヘビト

2

Outline

Introduction

Quantum Mechanics Two-dimensional Real Linear Algebra

Photon Polarization

Linear Polarization Review of Complex Numbers Circular and Elliptical Polarization

イロト イポト イヨト イヨト

ъ

Quantum Mechanics

- Developed between 1900 and 1926
- Radically changed our understanding of the physical world
 - Introduced probabilistic (undeterministic) behavior
 - It allows mutually exclusive situations to exist simultaneously in quantum superposition.
- We need to mathematically represent quantum
 - states
 - measurements
 - reversible transformations
 - (composite systems)
- My focus: photons and their polarization

くロト (過) (目) (日)

Quantum Mechanics Real Linear Algebra

Real Vectors 1/2

• Definition A column vector: $|s\rangle = \begin{pmatrix} s_1 \\ s_2 \end{pmatrix}$

• Definition A row vector: $\langle s | = (s_1 \ s_2)$

Definition

The dot/inner product between two real vectors $|s\rangle$ and $|m\rangle$:

$$\langle \boldsymbol{s} | \boldsymbol{m} \rangle = \begin{pmatrix} \boldsymbol{s}_1 & \boldsymbol{s}_2 \end{pmatrix} \begin{pmatrix} \boldsymbol{m}_1 \\ \boldsymbol{m}_2 \end{pmatrix} = \boldsymbol{s}_1 \boldsymbol{m}_1 + \boldsymbol{s}_2 \boldsymbol{m}_2$$

・ロト ・聞 と ・ ヨ と ・ ヨ と …

3

Quantum Mechanica Real Linear Algebra

Real Vectors 2/2

Definition

A vector is normalized if its length is 1.

Example

The following vectors are normalized:

$$\begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}} \end{pmatrix}$$

通 とくほ とくほ とう

3

Definition

Two vectors $|s\rangle$ and $|m\rangle$ are orthogonal (i.e. perpendicular) iff their inner product $\langle s|m\rangle$ is 0.

Example

The following vectors are mutually orthogonal:

$$\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 1 \cdot 0 + 0 \cdot 1 = 0$$

Introduction Linear Polarization Photon Polarization Review of Complex Numbers Summary Circular and Elliptical Polarizatio

Representating Linear Polarization States

- A photon's linearization state is described by an axis on a plane.
- Such an axis is mathematically described by a normalized vector. The general form of a normalized vector is

$$\begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$

 s_2 θ s_1

► Vector |s⟩ and its inverse −|s⟩ represent the same linear polarization state.

< ロ > < 同 > < 三 >

Measurements

- There can be no device that directly 'reads' the polarization state of a photon.
- Instead, there are only devices that 'ask' photons binary questions. More accurately, such a device can have a photon choose between two mutually orthogonal states.
 - e.g. "Which are you: vertically or horizontally polarized?"
- Even if the photon is in neither state, it still has to make a choice between the two states. The choice is done in a probabilistic fashion.
- The photon's state becomes the state that it chooses.

ヘロト ヘアト ヘヨト ヘ

The Math of Measurements 1/2

A polarization measurement device can be mathematically represented by an ordered pair of mutually orthogonal normalized state vectors (i.e. an orthonormal basis):

$$M = (|m^{(1)}\rangle, |m^{(2)}\rangle)$$

- When a photon with polarization state |s⟩ is subjected to measurement *M*, it probabilistically chooses between |m⁽¹⁾⟩ and |m⁽²⁾⟩. The probability of the photon choosing the state |m⁽ⁱ⁾⟩ is |⟨s|m⁽ⁱ⁾⟩|².
- ► So, the photon is much more likely to choose the state $|m^{(i)}\rangle$ that is closer to its original state $|s\rangle$.

ヘロト ヘワト ヘビト ヘビト

Introduction Linear Polarization Photon Polarization Review of Complex Numbers Summary Circular and Elliptical Polarization

The Math of Measurements 2/2

Example (A measurement)

Let
$$|m^{(1)}\rangle = \begin{pmatrix} 1/2\\\sqrt{3}/2 \end{pmatrix}$$
, $|m^{(2)}\rangle = \begin{pmatrix} \sqrt{3}/2\\-1/2 \end{pmatrix}$, and $|s\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$ What are the probabilities of the two outcomes?

$$p_1 = |\langle s | m^{(1)} \rangle|^2 = (1/2)^2 = 1/4$$

 $p_2 = |\langle s | m^{(2)} \rangle|^2 = (\sqrt{3}/2)^2 = 3/4$

• As expected $p_1 + p_2 = 1$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Introduction Linear Polarization Photon Polarization Review of Complex Numbers Summary Circular and Elliptical Polarizat

Polarization Measurement Devices in Practise

Wollaston prism

- Takes a beam of unpolarized light and devides it into separate horozintally and vertically polarized beams.
- Polarizing filter
 - Like a wollaston prism, but polarizes part of the beam and simply absorbs the rest.

Figure: A Wollaston prism

Introduction Linear Polarization Photon Polarization Review of Complex Numbers Summary Circular and Elliptical Polarizatio

Reversible Transformations

- A photon's polarization state can be reversibly transformed.
- Two types: (i) rotations and (ii) reflections around an axis
- The allowed transformations are mathematically represented by 2 × 2 real orthogonal matrices.
 - ► A matrix *R* is orthogonal iff *RR^T* = *R^TR* = *I*, where *I* is the identity matrix.
 - Let |s⟩ be a polarization state and R be a transformation matrix. Then the outcome of transformation R on the state |s⟩ is R|s⟩.
- General rotation matrix: $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$
- Reflection across a line of given angle

$$egin{pmatrix} \cos 2 heta & \sin 2 heta\ \sin 2 heta & -\cos 2 heta \end{pmatrix}$$

Transformation examples

Example (A rotation)

Let's rotate a horizontal state vector $|s\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ by 45° CCW:

$$\begin{pmatrix} \cos 45^{\circ} & -\sin 45^{\circ} \\ \sin 45^{\circ} & \cos 45^{\circ} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$$

Example (A reflection)

Let's reflect the same vector $|s\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ around an axis with the angle 45°:

$$\begin{pmatrix} \cos(2\cdot 45^\circ) & \sin(2\cdot 45^\circ) \\ \sin(2\cdot 45^\circ) & -\cos(2\cdot 45^\circ) \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

ヘロン 人間 とくほ とくほ とう

ъ

Complex Numbers

- i² = −1
- z = a + bi, where $a, b \in \mathbb{R}$
- The complex conjugate of z: $\bar{z} = a bi$
- The length of z is $|z| = \sqrt{a^2 + b^2} = \sqrt{z\overline{z}}$
- When |z| = 1, z = e^{iθ} = cos θ + i sin θ, where θ is the "phase" of z, i.e. the angle z forms with the positive real axis in the complex plane.

<ロト <回 > < 注 > < 注 > 、

Complex linear algebra

- ► The inner product between complex vectors $|s\rangle = {s_1 \choose s_2}$ and $|m\rangle = {m_1 \choose m_2}$ is defined to be $\langle s|m\rangle = \bar{s_1}m_1 + \bar{s_2}m_2$. The bar indicates complex conjugation.
 - Now ⟨s| is no longer just the transpose of |s⟩, but the complex conjugate of the transpose.
- The conjugate transpose (or adjoint) of a complex matrix A is A[†]. A[†] is obtained by first transposing A, and then taking a complex conjugate of each element.
- A matrix U is unitary iff $UU^{\dagger} = U^{\dagger}U = I$
 - Generalization for orthogonal matrices

ヘロン ヘアン ヘビン ヘビン

Circular and Elliptical Polarization

Generalizing polarization

- A general polarization state of a photon can be represented by a normalized two-dimensional complex vector.
- Two such vectors $|s\rangle$ and $|t\rangle$ represent the same polarization state if there is a complex γ such that $|\mathbf{s}\rangle = \gamma |t\rangle.$
- Measurements are represented by complex orthonormal bases $(m^{(1)}, m^{(2)})$, where $|m^{(i)}| = 0$ and $\langle m^{(1)} | m^{(2)} \rangle = 0$.
- All allowed reversible polarization transformations are represented by 2×2 unitary matrices.

・ロト ・四ト ・ヨト ・ヨト

Circular Polarization

- A complex vector |s⟩ = (^{s₁}_{s₂}) describes a circular polarization state iff s₂ = ±is₁.
 - The +-case is called "right-hand circular polarization" and the --case "left-hand circular polarization". These are the only two circular polarization states.
- A circularly polarized photon has a 50% change to pass any polarizing filter, regardless of its orientation.
 - So the polarization doesn't favor any particular axis. Hence the name "circular".

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Linear Polarization Review of Complex Numbers Circular and Elliptical Polarization

(日)

- ⊒ →

Elliptical Polarization

- A complex vector |s⟩ = (^{s₁}) describes an elliptical polarization iff s₂/s₁ ≠ ±i, but still has a nonzero imaginary part.
- Elliptically polarized photons do favor an axis over the other, but not as strongly as linearly polarized photons.

Summary

- Three different sorts of polarization: linear, circular and elliptical
- Polarization states can be represented by two-dimensional complex vectors.
- A polarization state can be "measured"
 - Measurements are represented by orthonormal bases
 - Makes photons probabilistically choose between two orthogonal states
 - The photons adopt the state they chose
- Polarization states can also be reversibly transformed
 - Allowed reversible transformations are represented by unitary matrices

ヘロト ヘアト ヘビト ヘビト

ъ