
Logical AND

00→ 0 01→ 0 10→ 0 11→ 1

Logical XOR

00→ 0 01→ 1 10→ 1 11→ 0

|00〉 → |00〉 |01〉 → |00〉 |10〉 → |00〉 |11〉 → |01〉

Using the classical gate analog doesn’t work, since there are three equivalent out-
put states with different input states. Therefore there is no unitary matrix that would
represent this transformation.

|00〉 → |a0〉 |01〉 → |b0〉 |10〉 → |c0〉 |11〉 → |01〉

Unitary transformation preserves orthogonality.

Even varying the first bit (we cannot modify the bit that holds our computation)
does not help since there are no three single qubits that are orthogonal (and all the
input states are).

Unitary transformations do not destroy information.

Quantum gates must be reversible.

The problem with these approaches has been that unitary transformations are re-
versible, the computation can be backtracked to the original state. In other words,
unitary transformations do not destroy information.

So to create a working quantum gate, the gate has to be reversible. Reversible
computing has been proposed for classical computers too, but quantum gates require
it.

UAND|x1, x2, y〉 = |x1, x2, y ⊕ (x1 ∧ x2)〉

|000〉 → |000〉 |010〉 → |010〉 |100〉 → |100〉 |110〉 → |111〉
|001〉 → |001〉 |011〉 → |011〉 |101〉 → |101〉 |111〉 → |110〉

So we will have to add a third bit. The two first bits will stay the same and third
will hold the result of the computation.

However since the quantum gate needs to be an unitary transformation, defining
the third output bit simply as the AND of first two bits won’t work, we would again get
multiple equivelant output states from orthogonal input states.

But defining the third output as an XOR of the AND and third input bit works. It
is not a problem from a practical point either since this bit isn’t data and we can get it
from a sink of preset qubits.

Unitary transformations are linear:

UAND(α|s〉+ β|t〉) = α(UAND|s〉) + β(UAND|t〉)



The final step to define our quantum version of classical AND is to ensure linearity;
unitary transformations should work for other states than our predefined orthogonal
basis too.

Photons

Ions

Superconducting loops

Knowing the mathematical theory of quantum gates doesn’t actually help us much
in implementing a quantum computer. Several attempts have been made, none of which
is yet determined to be any better than others.

One is simply using photons as qubits. The transformations are done by changing
the polarization of the photons. Second could be using a matrix of ionized atoms. The
transformations can be implemented by a combination of laser beams, hitting multiple
ions at the same time.

Third and more exotic example is using superconductive loops. A group of re-
searchers found in 2005 that they can implement a CNOT gate by putting two distinct
superconducting loops next to each other. |0〉 can be indicated as a clockwise current
and |1〉 as counterclockwise. The team found that modifying the magnetic field sur-
rounding the first loop can effect currents in both directions at the same time, in other
words the loop is in a superposition. The superposition also carried over to the other
loop that partially changed it direction of current.

Why bother?

The engineering problems in implementing a quantum computer are considerable,
and even now research concentrates on single or few qubit system, a far cry from
complete circuits. So why bother with quantum versions of logic gates?

Avoids von Neumann - Landauer limit.

The first answer lies in the inherent reversible property of quantum gates, reversibil-
ity. von Neumann hypothesized and Landauer formulated an important corollary from
Newton’s thermodynamics: Destroying information - increasing entropy - costs energy.
Therefore there is an effiency limit for systems that lose data.

However the concept of reversibility is older than that of a quantum gate, so re-
versible computing is not limited to quantum computers. Also the VNL is still far from
limits imposed by materials and techniques available.

Hadamard gate

H|0〉 = 1√
2
(|0〉+ |1〉) H|1〉 = 1√

2
(|0〉 − |1〉)

There is more in quantum computing, however. First let’s introduce a new quantum
gate operating on a single qubit, the Hadamard gate.
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HA ⊗HB ⊗ IC(|0〉A|0〉B |0〉C)

= 1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)⊗ |0〉

= 1
2 (|000〉+ |010〉+ |100〉+ |110〉

Let’s take a unitary transformation combining a couple Hadamard gates and an
identity to get us a bit more interesting combined state of three qubits.

UAND
1
2 (|000〉 ⊗ |010〉 ⊗ |100〉 ⊗ |110〉)

= 1
2 (|000〉+ |010〉+ |100〉+ |111〉)

Now what happens when we put this three qubit system through an AND gate is
that the transformation operates on all of the possible states of the superposition at the
same time.

Superpositions for parallel computation.

It could be said that the quantum computer computed the output for all the possible
inputs at one operation, utilizing quantum superpositions for massive parallelism.

Life isn’t as sweet as it sounds at first, though, since it is only possible to read one
of these states, and we cannot even select which one - the measurement takes a random
state.

ψ → UNUN−1 . . . U1ψ = Uσψ

We don’t have to settle for simple operations, however. By combining simple quan-
tum gates we can formulate an unitary transformation operating on arbitarily large
amounts of qubits. Even if output has randomness, this opens completely new venues
for algorith design.

Search from an unsorted database:

Classical computing: O(N)

Quantum computer: O(
√
N)

We will here more about possible algorithms next week, but let’s look into a search
from an unsorted database as an example. Of course using a classical computer, find-
ing one particular entry from the database of N entries will take on average N

2 steps.
There are several algorithms for quantum computers that can do better, Grover’s can
do O(

√
N). With M quantum computers working in parallel, this could be reduced to

O(
√

N
M ).

A clear advantage!

“All computing machines operating with the laws of [given] realm of physics are
equivalent.”

-Gui Lu Long
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The reason why these sorts of algorithms are possible is that quantum algorithm
operates on a different realm of physics than classical computers. Classical computers
can be simulated be simulated on an universal turing machine with a maximum of
polynomial slow down. But UTM cannot efficiently simulate quantum systems, while
at the same time quantum computers can do everything that classical computers can.

Babbage’s engine, Intel Core 2 Duo

equivalent

Quantum computers (ions, photons, . . . )

equivalent

The actualy implementation of the computer doesn’t really matter. In a sense, all
our computing machines from Babbage’s differential engine to the latest microproces-
sors are the same.

In same sense all quantum computers are the same, no matter how you implement
them.

Note that we are speaking in a theoretical sense. It could be argued that if the
noise and other problems of analog computers were lesser, they couldn’t be simulated
by digital computers operating in the realm of integers. However in theory, a digital
computer with unlimited memory can simulate an analog computer.

Where is particle wave duality?

The quantum gates described earlier utilize the phenonemom of superpositions to
do magic that’s impossible in classical physics. That isn’t all that quantum mechanics
has to offer. An important aspect of QM is that everything can be described as an
particle and also as a wave, at the same time.

So where does the duality come into picture?

Classical computers

Quantum particle computer

Duality quantum computer

In fact quantum mechanics does not expand our realm of computing into just one,
but two new categories: Quantum computers using quantum bits, qubits, as particles,
but also a duality computer understanding and using also the wave properties of every
particle. We are not dealing with single, descrete qubits anymore, but with duality
enabled dubits.

New gates for dubits:

Wave dividers / splitters and combiners.

4



Duality computer is a relatively new concept. One of the first to talk about it with
full speed ups of algorithms was Gui Lu Long on 2005.

The main concept introduced to duality computing is general quantum interferece.
To demonstrate, concider the double slit experiment of light. A laser shone into a

plate with two slits, wave fronts are formed at both slits. The interference from these
fronts can be seen as a pattern on a shade behind the slits.

Now, the same thing happens also with just one photon. This seems illogical, the
photon is a particle and must pass through only one slit. However, if we try to mea-
sure through which slit the photon passed, the interference pattern dissappears and the
photon acts like a particle. If we don’t measure it, the pattern is there again. Same phe-
nomenom can be found with other fundamental particles like electrons, but also with
ensembles like ions and even molecules.

General quantum interference can be useful. As long as we don’t try to measure
the path and let the qubit act as a qubit, we can control the interference. A duality
computer does exactly that: in addition to ‘normal’ quantum gates, it can also divide a
quantum wave into subwaves and combine them later into one.

ψ → ↗ p1ψ → p1U1ψ ↘
↘ p2ψ → p2U2ψ

↗ (p1U1 + p2U2)ψ

ψ → (
∑
piUi)ψ

Dividing and combining in itself wouldn’t be so useful, but this allows us to use
different unitary transformations for the different subpaths. Where a quantum particle
computer can compute only an arbitary unitary transform, the duality computer can use
an linear combination of any unitary transformations.

The combination isn’t an unitary transformation any more, and as a side effect
duality computer isn’t, and perhaps even cannot be reversible.

Photons - nonlinear quantum optics
Giant molecules

For now there hasn’t been attempts to actually build a duality computer, even of
few gates. Nevertheless, several possible ways to proceed have been proposed. One is,
again, using photons. Splitting the photons into subwaves can be done somewhat easily
with dichromic beam splitters and parametric conversion crystals. Dichromic beam
splitter is a device to divide and combine beams of different frequency and parametric
conversion crystal divide (down conversion) and combine (up conversion) one photon
of a higher frequency to and from two photons of lesser frequency.

Another possibility would be using giant molecules, which relates to ionic particle
computer. A molecule would consist of several ions, each ion representing a dubit. The
ions need to be in the same molecule so that they would act as a combined quantum
wave.

Search from an unsorted database:
Classical computing: O(N)

Quantum particle computer: O(
√
N)

Duality quantum computer: Single query
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The theoretical research of a duality computer is in it’s infancy, but it has been
proposed that while a quantum particle computer can handle a search from an unsorted
database in O(

√
N), a duality computer could do the search in a single query.

Questions?

Thank you
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