T-79.4001: The Hat Problem

Janne Peltola

5.3.2008

Janne Peltola T-79.4001: The Hat Problem

- Introduction
- Solutions

- Algorithm
- Efficiency

< 🗇 >

★ E > < E >

Uutline	0				
	_	-	t I	•	
	0	u			

æ

∢ ≣⇒

The situation

n players play a game. The rules are simple.

• The players enter a room blindfolded.

0				
		IT.	n	ρ

- The players enter a room blindfolded.
- A hat is put on each player's head. The hat is either red or blue.

0				
L		IT.	n	ρ

- The players enter a room blindfolded.
- A hat is put on each player's head. The hat is either red or blue.
- The players must guess the color of their hat or pass.

0				
L		IT.	n	ρ

- The players enter a room blindfolded.
- A hat is put on each player's head. The hat is either red or blue.
- The players must guess the color of their hat or pass.
- The players may not communicate with each other.

- The players enter a room blindfolded.
- A hat is put on each player's head. The hat is either red or blue.
- The players must guess the color of their hat or pass.
- The players may not communicate with each other.
- The players win if each non-passing guess is correct.

n players play a game. The rules are simple.

- The players enter a room blindfolded.
- A hat is put on each player's head. The hat is either red or blue.
- The players must guess the color of their hat or pass.
- The players may not communicate with each other.
- The players win if each non-passing guess is correct.

We wish to find a strategy which maximizes the probability p that the players win.

Outline	The Problem ○●○○○	The Solution	Variants
Some history			

- The problem was first proposed by T. Ebert (UCLA) in his Ph.D. thesis in 1998.
- There's certain charm as a puzzle but the problem doesn't seem terribly relevant.

0				
L		IT.	n	ρ

Some history

- The problem was first proposed by T. Ebert (UCLA) in his Ph.D. thesis in 1998.
- There's certain charm as a puzzle but the problem doesn't seem terribly relevant.
- However, there are connections between its efficient algorithmic solutions for $n = 2^k 1$ and coding theory.

			c	
Outillie				

Some history

- The problem was first proposed by T. Ebert (UCLA) in his Ph.D. thesis in 1998.
- There's certain charm as a puzzle but the problem doesn't seem terribly relevant.
- However, there are connections between its efficient algorithmic solutions for $n = 2^k 1$ and coding theory.
- Thus far the problem has eluded tractable solutions for $n \neq 2^k 1$.

A 3 1 A 3 1

Outline

The Problem ○○●○○ The Solution

Variants

3 Players: a naïve strategy

• Suppose n = 3. The players are Alice, Bob and Chuck.

・ロン ・回と ・ヨン ・ヨン

Live Luno			
		-	i n
Outime	<i></i>		 IC.

The Problem ○○●○○ The Solution

Variants

3 Players: a naïve strategy

- Suppose n = 3. The players are Alice, Bob and Chuck.
- If Alice and Bob pass, Chuck guesses correctly 50% of the time.

< 🗇 🕨

Live Luno			
		-	i n
Outime	<i></i>		 IC.

The Problem ○○●○○ The Solution

3 Players: a naïve strategy

- Suppose n = 3. The players are Alice, Bob and Chuck.
- If Alice and Bob pass, Chuck guesses correctly 50% of the time.
- Can we do better than this?

Untline	0				
	_	-	t i	n	
outilite	0	u			

The Problem ○○○●○ The Solution

Variants

3 Players: a better strategy

 Each player looks at the other players' hats. R R R R R В В В В В R R В В R R В В В R В R В R

< ≣⇒

-E →

A ■

Э

0			
	 ÷		
0			

The Problem ○○○●○ The Solution

Variants

3 Players: a better strategy

- Each player looks at the other players' hats.
- If the hats are different, he/she passes.

R	R	R
R	R	В
В	В	В
В	R	R
В	В	R
R	В	В
В	R	В
R	В	R

A ■

< ≣ >

The Problem ○○○●○ The Solution

Variants

3 Players: a better strategy

- Each player looks at the other players' hats.
- If the hats are different, he/she passes.
- If the hats are of the same color, he/she picks the opposite one.

3 Players: a better strategy

- Each player looks at the other players' hats.
- If the hats are different, he/she passes.
- If the hats are of the same color, he/she picks the opposite one.
- This results in $p = \frac{3}{4}$, a 50% increase.

R	R	R
R	R	В
В	В	В
В	R	R
В	В	R
R	В	В
В	R	В
R	В	R

3 Players: a better strategy

- Each player looks at the other players' hats.
- If the hats are different, he/she passes.
- If the hats are of the same color, he/she picks the opposite one.
- This results in $p = \frac{3}{4}$, a 50% increase.
- This strategy can be generalized for all $n = 2^k 1$.

0			
	 ÷		
0			

• The size of the state space is $2^7 = 128$.

- The size of the state space is $2^7 = 128$.
- The naïve strategy can be applied.

イロン イヨン イヨン イヨン

- The size of the state space is $2^7 = 128$.
- The naïve strategy can be applied.
- However, there is a complex strategy to achieve $p = \frac{63}{64}$.

イロト イヨト イヨト イヨト

- The size of the state space is $2^7 = 128$.
- The naïve strategy can be applied.
- However, there is a complex strategy to achieve $p = \frac{63}{64}$.
- Next, the general strategy will be defined.

< 17 b

The Idea

- We have encoded certain states in C.
- We present a strategy to obtain winning sequences via C.
- We show that the strategy fails with probability $p = 2^{-r}$.

イロト イヨト イヨト イヨト

0			
	 ÷		
0			

Definitions

• Consider a game of $n = 2^r - 1$ players and 2 colors.

・ロン ・回と ・ヨン・

			c	
Outillie				

Definitions

- Consider a game of $n = 2^r 1$ players and 2 colors.
- Let $v = (1110100)^T \in \mathbb{Z}_2^n$ be the state vector.

Definition

Let *H* be an $r \times n$ matrix with entries in \mathbb{Z}_2 . Suppose that all possible nonzero columns occur exactly once. Then *H* is the check matrix (ie. $Hv^T = 0$) of a code *C*. The code is called an [n, n - r] Hamming code.

・ロン ・回と ・ヨン ・ヨン

Outline	The Problem	The Solution	Variants
The Strategy			

• Recall the state vector
$$v = (1110100)^T \in \mathbb{Z}_2^7$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

Outline	The Problem	The Solution ○○●○○○○	Variants
The Strategy			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで

] †	ine
ouu	

- Recall the state vector $v = (1110100)^T \in \mathbb{Z}_2^7$ • We choose (for this case) $H = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$
- For person 3, there are two possible v's: $v_0 = (1100100)^T$ or $v_1 = (1110100)^T$.

0				
L		IT.	n	ρ

- Recall the state vector $v = (1110100)^T \in \mathbb{Z}_2^7$
- We choose (for this case) $H = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$
- For person 3, there are two possible v's: $v_0 = (1100100)^T$ or $v_1 = (1110100)^T$.
- Person 3 uses the following rules to determine his call:

			c	
Outillie				

- Recall the state vector $v = (1110100)^T \in \mathbb{Z}_2^7$
- We choose (for this case) $H = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$
- For person 3, there are two possible v's: $v_0 = (1100100)^T$ or $v_1 = (1110100)^T$.
- Person 3 uses the following rules to determine his call:
 If Hv₀^T ≠ 0 and Hv₁^T ≠ 0, he passes

		t I		
-	u			c

- Recall the state vector $v = (1110100)^T \in \mathbb{Z}_2^7$
- We choose (for this case) $H = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$
- For person 3, there are two possible v's: $v_0 = (1100100)^T$ or $v_1 = (1110100)^T$.
- Person 3 uses the following rules to determine his call:
 - If $Hv_0^T \neq 0$ and $Hv_1^T \neq 0$, he passes
 - If $Hv_0^T = 0$ and $Hv_1^T \neq 0$, he calls Red

		t I		
-	u			c

- Recall the state vector $v = (1110100)^T \in \mathbb{Z}_2^7$
- We choose (for this case) $H = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$
- For person 3, there are two possible v's: $v_0 = (1100100)^T$ or $v_1 = (1110100)^T$.
- Person 3 uses the following rules to determine his call:
 - If $Hv_{0}^{T} \neq 0$ and $Hv_{1}^{T} \neq 0$, he passes
 - If $Hv_0^T = 0$ and $Hv_1^T \neq 0$, he calls Red
 - If $Hv_0^{T} \neq 0$ and $Hv_1^{T} = 0$, he calls Blue

Outline

The Problem

The Solution

Variants

Why is this a good idea?

Lemma

There is a unique codeword c so that $d_H(v, c) = 1$.

Proof.

Existence:

• Let
$$s = Hv^T \neq 0$$
. s is a column of H, therefore $s = He_i^T$

•
$$H(v + e_i)^T = s + s = 0$$
, so $d_H(v, c) = 1$.

・ロト ・回ト ・ヨト ・ヨト

		_		
		÷	n	
0	u	u		

The Problem

The Solution

Why is this a good idea?

Lemma

There is a unique codeword c so that $d_H(v, c) = 1$.

Proof.

Uniqueness:

- Let $c_1, c_2 \in C$ so that $d_H(v, c_1) = d_H(v, c_2) = 1$.
- Therefore $v + c_1 = e_i$ and $v + c_2 = e_j$ for some (i, j).
- We have $e_i + e_j = c_1 + c_2 \in C$, so $H(e_i + e_j)^T = 0$
- $He_i^T = He_j^T$ so columns *i* and *j* must be equal, but there are no equal columns by definition \Rightarrow contradiction.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

I have been	
Outiin	

The Solution ○○○○●○○

Why is this NOT a good idea?

Theorem

The strategy is successful whenever $Hv^T \neq 0$, but fails when $Hv^T = 0$.

Proof.

• We previously showed that there is a *unique* codeword *c* so that $d_H(v, c) = 1$.

ヘロン 人間と 人間と 人間と

Uutline	0				
	_	-	t I	•	
	0	u			

The Problem

The Solution ○○○○●○○

Why is this NOT a good idea?

Theorem

The strategy is successful whenever $Hv^T \neq 0$, but fails when $Hv^T = 0$.

Proof.

- We previously showed that there is a *unique* codeword *c* so that $d_H(v, c) = 1$.
- If we iterate through the vectors $v_i = v + e_i$, we find that $Hv_i^T = 0$ only for one value of *i*.

A (1) > A (2) > A

÷.

Uutline	0				
	_	-	t I	•	
	0	u			

Why is this NOT a good idea?

Theorem

The strategy is successful whenever $Hv^T \neq 0$, but fails when $Hv^T = 0$.

Proof.

- We previously showed that there is a *unique* codeword *c* so that $d_H(v, c) = 1$.
- If we iterate through the vectors $v_i = v + e_i$, we find that $Hv_i^T = 0$ only for one value of *i*.
- Recall that we assumed that $Hv^T \neq 0$, therefore the case $Hv_0^T = 0$ precludes all other possibilities $\Rightarrow v_0 = v$.

(A) → (A) ≥ >

Live Luno			
		-	i n
Outime	<i></i>		 IC.

The Solution ○○○○●○○

Why is this NOT a good idea?

Theorem

The strategy is successful whenever $Hv^T \neq 0$, but fails when $Hv^T = 0$.

Proof.

- We previously showed that there is a *unique* codeword *c* so that $d_H(v, c) = 1$.
- If we iterate through the vectors $v_i = v + e_i$, we find that $Hv_i^T = 0$ only for one value of *i*.
- Recall that we assumed that $Hv^T \neq 0$, therefore the case $Hv_0^T = 0$ precludes all other possibilities $\Rightarrow v_0 = v$.
- If $Hv^T = 0$, no one would pass \Rightarrow the strategy fails.

Live Luno			
		-	i n
Outime	<i></i>		 IC.

The Solution ○○○○●○

A helpful lemma

Lemma

An [n, k] linear code has 2^k elements.

Proof.

• An [n, k] linear code C has a check matrix $H \in \mathbb{Z}_2^{k \times n}$.

・ロト ・回ト ・ヨト ・ヨト

3

Live Luno			
		-	i n
Outime	<i></i>		 IC.

The Solution ○○○○●○

A helpful lemma

Lemma

An [n, k] linear code has 2^k elements.

Proof.

- An [n, k] linear code C has a check matrix $H \in \mathbb{Z}_2^{k \times n}$.
- The elements of C are the columns $+ (000)^{T}$

<ロ> <同> <同> <同> < 同>

•	÷		
0	u		c

The Solution ○○○○●○

A helpful lemma

Lemma

An [n, k] linear code has 2^k elements.

Proof.

- An [n, k] linear code C has a check matrix $H \in \mathbb{Z}_2^{k \times n}$.
- The elements of C are the columns $+ (000)^{T}$
- By combinatorics, there are 2^k elements.

・ロト ・回ト ・ヨト

~			
	t I	n	ο
~			

The Problem

The Solution ○○○○○●

How often does one fail?

Theorem

The probability that players win by using the strategy is $1 - 2^{-r}$.

Proof.

• There are 2^n elements in \mathbb{Z}_2^n .

<ロ> <同> <同> <同> < 同>

글 > 글

Uutline	0				
	_	-	t I	•	
	0	u			

How often does one fail?

Theorem

The probability that players win by using the strategy is $1 - 2^{-r}$.

Proof.

- There are 2^n elements in \mathbb{Z}_2^n .
- Therefore, the probability to find k specific elements is $\frac{2^{k}}{2^{n}}$.

/⊒ ▶ < ≣ ▶

0			
	 ÷		
0			

How often does one fail?

Theorem

The probability that players win by using the strategy is $1 - 2^{-r}$.

Proof.

- There are 2^n elements in \mathbb{Z}_2^n .
- Therefore, the probability to find k specific elements is $\frac{2^k}{2^n}$.
- Therefore, the probability to hit an element v so that $Hv^T = 0$ is 2^{-r} .

(4月) (日)

How often does one fail?

Theorem

The probability that players win by using the strategy is $1 - 2^{-r}$.

Proof.

- There are 2^n elements in \mathbb{Z}_2^n .
- Therefore, the probability to find k specific elements is $\frac{2^k}{2^n}$.
- Therefore, the probability to hit an element v so that $Hv^T = 0$ is 2^{-r} .
- The complement case's $(Hv^T \neq 0)$ probability is $1 2^{-r}$.

イロト イヨト イヨト イヨト

Uutline	0				
	_	-	t I	•	
	0	u			

- In the best tradition of the literature, I explore the opportunities for expanding the problem without providing actual solutions.
- One could consider k colors instead of 2.

Uutline	0				
	_	-	t I	•	
	0	u			

- In the best tradition of the literature, I explore the opportunities for expanding the problem without providing actual solutions.
- One could consider k colors instead of 2.
- One could consider $n \neq 2^r 1$.

< 注→ < 注→

A ■

Untline	0					
			IŤ	п	n	ρ

- In the best tradition of the literature, I explore the opportunities for expanding the problem without providing actual solutions.
- One could consider k colors instead of 2.
- One could consider $n \neq 2^r 1$.
- One could consider non-symmetrical color distributions.

- In the best tradition of the literature, I explore the opportunities for expanding the problem without providing actual solutions.
- One could consider k colors instead of 2.
- One could consider $n \neq 2^r 1$.
- One could consider non-symmetrical color distributions.
- One could consider variants with more error tolerance (i.e. 1 error allowed). Could one solve $n \neq 2^r 1$ with relaxed conditions?

イロン イヨン イヨン イヨン

-∢ ≣ ≯

Summary

- We found an interesting connection between coding theory and game theory.
- One can encode certain states and then make sure that there are only unique legal states which encode to nearby codewords.
- One can use this knowledge to develop a near-optimal strategy.