The Bennett-Brassard Protocol
Protecting Information, Chapter 3.1

Timo Lindfors

20.2.2008
Introduction

The Protocol

Probabilistic Analysis

Limitations

Summary
Motivation

- Alice and Bob want to generate a shared secret.
- Eve has a quantum computer.
- Alice has read “Algorithms for Quantum Computation: Discrete Logarithms and Factoring” [Shor94] and knows that a quantum computer can solve the discrete logarithm problem (DLP) efficiently.
- Traditional Diffie-Hellman key exchange depends on the difficulty of DLP so Alice and Bob need to use something else.
Idea: Use quantum effects to detect Eve

- “Quantum cryptography: Public key distribution and coin tossing” [Bennett & Brassard 1984]
- Alice can send photons to Bob and encode the key in the polarization of the photons.
- Recall that measurement of a quantum variable is not passive.
- If Eve uses wrong basis for her measurement she will get random measurements. However, the same is also true for Bob.
- To solve this, Alice and Bob use a classical channel to figure out which measurements were done using right basis. Measurements done with wrong basis can be ignored.
Step 1/6: Generate key

- Alice generates two random n-bit strings

 $A = (a_1, \ldots, a_n)$
 $S = (s_1, \ldots, s_n)$

- where $a_i \in \{0, 1\}$ is used to represent secret bits and

- $s_i \in \{+, x\}$ denotes the basis used for photons polarization.
Step 2/6: Send photons

- Alice sends \(n \) photons to Bob.
- Alice uses \(s_i \) to select between two possible bases
 \[
 M_+ = (|\downarrow\rangle, |\leftrightarrow\rangle)
 \]
 \[
 M_\times = ((|\downarrow\rangle + |\leftrightarrow\rangle)/\sqrt{2}, (|\downarrow\rangle - |\leftrightarrow\rangle)/\sqrt{2})
 \]
- and \(a_i \) to select if he uses the first or the second element of the basis.
Step 3/6: Receive photons

- Bob generates random n-bit string
 \[R = (r_1, \ldots, r_n) \]
- where $r_i \in \{+, \times\}$.
- When Bob receives ith photon he measures its polarity in base r_i and finally gets bit string
 \[B = (b_1, \ldots, b_n) \]
- If Alice and Bob happened to chose the same basis and no tampering occurred $a_i = b_i$.
Step 4/6: Exchange S and R

- Alice and Bob exchange S and R over a classical channel and compare them.
- If $s_i \neq r_i$ Alice removes a_i from A and Bob removes b_i from B. Let’s denote the modified versions with A’ and B’.
- If there has been no interference A’ and B’ should be identical since they were sent and measured in the same basis.
- Since there is a 50% chance that Alice and Bob used the same basis the length of A’ should be approximately $n/2$.

Timo Lindfors
The Bennett-Brassard Protocol Protecting Information, Chapter 3.1
Step 5/6: Estimate errors

- Even without Eve there will be errors in the transmission.
- Alice sends a random subset of A' to Bob over a classical channel.
- Bob can estimate the total number of errors using this sample.
- After the estimation bits sent over classical channel are removed from A' and B' since Eve knows them. We’ll denote the end result A'' and B''.
Step 6/6: Estimate information Eve could have gained

- Estimated number of error bits in the previous step is used to estimate the amount of information Eve might have got.
- This information is used to derive even smaller strings A''' and B''' that Eve should not be able to know anything about.
- Details covered in Chapter 5 (presentations on 9.4. and 23.4.) involve error correction and privacy amplification.
Probabilistic analysis

- Suppose Eve measures a photon with probability p and then resends it to Bob.
- Eve learns the bit with probability $p/2$.
- Eve causes an error with probability $p/4$ (Eve uses wrong basis and Bob measures wrong bit).
Estimating amount of information

- If Eve knows that a bit is 0 with probability p_0 and 1 with probability p_1 the Rényi entropy of the distribution is defined as
 \[H_R(p_0, p_1) = -\log_2(p_0^2 + p_1^2) \]
- With $H_R(0, 1) = 0$ Eve knows exactly what the bit is.
- With $H_R(1/2, 1/2) = 1$ Eve does not know anything about the bit.
- With $H_R(1/8, 7/8) = 0.36$ Eve has reasonably strong belief that the bit is 1.
- We also define the term Rényi information to mean $1 - H_R$.
Naturally man-in-the-middle is still possible if Eve can modify traffic on both quantum and classical channels.

Errors in the quantum channel limit the practical distance over which messages can be sent.

Imprefect hardware might send more than one photon per bit. Eve could measure these with different bases and learn the right basis. However, “Unconditional security of practical quantum key distribution” [Inamori et al. 2006] claims that the protocol can be made secure in even in such a real-world setting.
The Bennett-Brassard protocol provides a secure way to share a secret.

The protocol needs both a quantum channel and an authenticated classical channel.

Security is mainly based on the fact that there is no passive way to measure a quantum variable.

(Quantum) error correcting codes and privacy amplification are needed to use the protocol in the real world. These will be covered later in other representations.