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Linear Codes

C is a linear code if and only if

C ⊆ Fn where F is any finite field

C 6= /0
∀~x,~y ∈C →~x+~y ∈C

∀α ∈ F and ∀~x ∈C → α~x ∈C
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Generator Matrices

Rowspace is defined as
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Dual Codes
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Linear codes C⊥ generator matrix H can be used to
easily check if an element~x ∈ Fn is part of the linear
code or not by checking if H ·~xT =~0 holds

A generator matrix H for linear code C⊥ is called a
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Conclusion

Linear codes are a set of codes that have nice
properties that make it easy to manipulate them

Many real life error checking codes are linear codes
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