
1 / 28

More techniques
for localised failures

Riku Saikkonen

4th April 2007

Based on sections 7.4–7.7 of
N. Santoro: Design and Analysis of

Distributed Algorithms, Wiley 2007.

2 / 28

Contents

Ways of avoiding the Single-Fault Disaster theorem:
• synchronous systems (previous presentation)
• randomisation
• failure detectors
• pre-execution failures

And a slightly different topic:
• localised permanent link failures

3 / 28

Restrictions

Assumptions for all the node failure topics:
• connectivity, bidirectional links, unique IDs
• complete graph
• at most f nodes can fail, and only by crashing
• (asynchronous system)

Using randomisation 4 / 28

Using randomisation

Using randomisation 5 / 28

Uncertainty

Non-determinism⇒ uncertain results⇒ a probability distribution on executions

Types of randomised protocols:

Monte Carlo always terminates
correct result with high probability

Las Vegas always correct
terminates with high probability

Hybrid both with high probability

Using randomisation 6 / 28

Example: Randomised asynchronous consensus

Consensus problem:

• nodes have initial values 0 or 1
• goal: all non-faulty nodes decide on a common value
• non-triviality: if all values are the same, select that one

Las Vegas protocol Rand-Omit (next slide):
• solves Consensus with up to f < n/2 crash failures
• additional restriction: Message Ordering

f < n/2 crashed nodes, Message Ordering, complete graph, asynchronous

Using randomisation 7 / 28

Algorithm Rand-Omit
pref← initial value; r← 1;
repeat

Send 〈VOTE, r, pref〉 to all.
Receive n − f VOTE messages.
if all have the same value v

or: > n/2 messages

then found← v else found← ?;
Send 〈RATIFY, r, found〉 to all.
Receive n − f RATIFY messages.
if one or more have a value w 6= ? then

pref← w;
if all have the same w and not decided yet then

or: > f

Decide on w.
else pref← 0 or 1 randomly;
r← r + 1

until one round after we made our decision

f < n/2 crashed nodes, Message Ordering, complete graph, asynchronous

Using randomisation 7 / 28

Algorithm Rand-Omit
pref← initial value; r← 1;
repeat

stage
1

Send 〈VOTE, r, pref〉 to all.
Receive n − f VOTE messages.
if all have the same value v

or: > n/2 messages

then found← v else found← ?;

stage
2

Send 〈RATIFY, r, found〉 to all.
Receive n − f RATIFY messages.
if one or more have a value w 6= ? then

pref← w;
if all have the same w and not decided yet then

or: > f

Decide on w.
else pref← 0 or 1 randomly;
r← r + 1

until one round after we made our decision

f < n/2 crashed nodes, Message Ordering, complete graph, asynchronous

Using randomisation 7 / 28

Algorithm Rand-Omit
pref← initial value; r← 1;
repeat

stage
1

Send 〈VOTE, r, pref〉 to all.
Receive n − f VOTE messages.
if all have the same value v or: > n/2 messages
then found← v else found← ?;

stage
2

Send 〈RATIFY, r, found〉 to all.
Receive n − f RATIFY messages.
if one or more have a value w 6= ? then

pref← w;
if all have the same w and not decided yet then or: > f

Decide on w.
else pref← 0 or 1 randomly;
r← r + 1

until one round after we made our decision

f < n/2 crashed nodes, Message Ordering, complete graph, asynchronous

Using randomisation 8 / 28

Analysis of Rand-Omit

Lemma: If prefx(r) = v for every correct x, then all correct
entities decide on v in that round r.

Lemma: In every round r, for all correct x, either
foundx(r) ∈ {0, ?} or foundx(r) ∈ {1, ?}.

Lemma: If x makes the first decision on v at round r, then all
nonfaulty nodes decide v by round r + 1.

Lemma: Let “success” = prefs of correct nodes identical. Then
Pr[success within k rounds] ≥ 1 − (1 − 2−(n−f))k.⇒ Rand-Omit terminates with probability 1.

Theorem (very non-trivial)

If f = O(
√

n), the expected number of rounds in Rand-Omit
is constant (i.e., independent of n).

f < n/2 crashed nodes, Message Ordering, complete graph, asynchronous

Using randomisation 9 / 28

Reducing the number of rounds
Protocol Committee f < n/3 (not n/2)

• create k = O(n2) committees, each having
s = O(log n) nodes as members

• select the members such that at most O(n) = O(
√

k)

committees are faulty, i.e., have > s/3 faulty nodes
• each committee simulates one entity of Rand-Omit
• a nonfaulty committee must work together

and use its own (common) random numbers
• O(

√
k) faulty committees, so the expected number of

simulated Rand-Omit rounds is constant
• time for simulating one round is O(coin flips) =

O(max. faulty members in a nonfaulty committee) =

O(s) = O(log n)

f < n/3 crashed nodes, Message Ordering, complete graph, asynchronous

Failure detection 10 / 28

Failure detection

f crashed nodes, IDs known, complete graph, asynchronous

Failure detection 11 / 28

Using failure detection

The Single-Fault Disaster theorem requires that
faults cannot be detected.

• a reliable failure detector would make
the problem solvable

• . . . but cannot be constructed in practice
(except for synchronous systems)

• an unreliable failure detector is often good enough!

Failure detectors are distributed: each node
suspects some of its possibly faulty neighbours.

• additional restriction here: IDs of neighbours known

f crashed nodes, IDs known, complete graph, asynchronous

Failure detection 11 / 28

Using failure detection

The Single-Fault Disaster theorem requires that
faults cannot be detected.

• a reliable failure detector would make
the problem solvable

• . . . but cannot be constructed in practice
(except for synchronous systems)

• an unreliable failure detector is often good enough!

Failure detectors are distributed: each node
suspects some of its possibly faulty neighbours.

• additional restriction here: IDs of neighbours known

f crashed nodes, IDs known, complete graph, asynchronous

Failure detection 12 / 28

Classification of unreliable failure detectors

Completeness property “can’t suspect nothing”

Strong completeness eventually every failed node is
permanently suspected by every correct node

Weak completeness eventually every failed node is
permanently suspected by some correct node

Accuracy property “can’t suspect everything”

Perpetual strong no node suspected before it crashes

Perpetual weak some correct node is never suspected

Eventual strong eventually no correct nodes are suspected

Eventual weak eventually one correct node is not suspected

f crashed nodes, IDs known, complete graph, asynchronous

Failure detection 13 / 28

The weakest useful failure detector

Weak completeness to strong completeness

Algorithm to transform weak Dx to strong D ′
x in node x:

initialise: D ′
x ← ∅

run repeatedly: Send 〈x, Dx〉 to all neighbours.
when receiving 〈y, s〉: D ′

x ← D ′
x ∪ s − {y}

• preserves accuracy properties

Theorem
Weak completeness and eventual weak accuracy are
sufficient for reaching consensus with f < n/2 crashes.

f crashed nodes, IDs known, complete graph, asynchronous

Pre-execution failures 14 / 28

Pre-execution failures

Pre-execution failures 15 / 28

Pre-execution failures are different

The Single-Fault Disaster theorem relies on
choosing the failed node and the time of failure
during the execution of the protocol.

New restriction: Partial Reliability

• no failures occur during the computation
• at most f nodes have crashed before the protocol starts
• but we still do not know which nodes have failed

Pre-execution failures 16 / 28

Recap: Efficient election in a complete graph
The CompleteElect algorithm from a previous presentation:

CompleteElect no failures, n nodes, k initiators

States: candidate (initial), captured, passive
Define: sx = number of nodes that x has captured (“stage”)
Basic algorithm:

• Candidate x sends 〈Capture, sX, id(x)〉 to a neighbour y.
• If y is passive, the attack succeeds.
• If y is a candidate, the attack succeeds if sx > sy, or

sx = sy and id(x) < id(y); otherwise x becomes passive.
• If y is captured: y sends 〈Warning, sx, id(x)〉 to its owner

(unless sx is too small), which replies Yes or No; y will
wait for this result before issuing another Warning.

Message complexity O(n log n), time O(n).

no failures, k initiators, complete graph, asynchronous

Pre-execution failures 17 / 28

Example: Election with Partial Reliability

Changes to CompleteElect: f < dn/2e+ 1

• x sends Capture to f + 1 neighbours (not 1)
• if x receives Accept, send one new Capture

(i.e., still f + 1 Captures pending)
• was: unsuccessful attack (Reject message)⇒ x passive;

now, sx may have increased from other Captures
• x must reject Rejects if sx has become too large
• this is done by settlement: x sends a new Capture to y

and waits for its reply, queuing all other messages

• Warning-waits and settlement work because
y must be nonfaulty due to Partial Reliability

• settlements cannot create a deadlock
(because of asymmetry in sx and sy)

Partial Rel., f < dn/2e+ 1 crashed nodes, k initiators, complete graph, asynch.

Pre-execution failures 18 / 28

Analysis of Election with Partial Reliability

Lemma: Every node x reaches sx > n/2

or ceases to be a candidate.

Lemma: Let x be a candidate and s its final size. The total
number of Capture messages from x is ≤ 2s + f.
(f + 1 initially, ≤ s − 1 after Accepts, ≤ s replies to Rejects)

Lemma: sx ≤ n/l if there are l − 1 candidates whose final size
is not smaller than that of candidate x.

· · ·⇒ Messages: ≤ n − 1 + 4 ·
∑k

j=1 (2 (n/j) + f)

FT-CompleteElect is worst-case optimal:

Message complexity: O(n log k + kf)

Ω(n log k) for fault-tolerant election + Ω(kf) initial Captures

Partial Rel., f < dn/2e+ 1 crashed nodes, k initiators, complete graph, asynch.

Localised link failures 19 / 28

Localised link failures

Localised link failures 20 / 28

A tale of two synchronous generals

• unsolvable even if the
system is synchronous

• nodes cannot achieve
common knowledge
if the only link can fail

• broadcast not possible⇒ common knowledge
not possible

• solution: more links, i.e.,
better connectivity
in the network

Localised link failures 20 / 28

A tale of two synchronous generals

• unsolvable even if the
system is synchronous

• nodes cannot achieve
common knowledge
if the only link can fail

• broadcast not possible⇒ common knowledge
not possible

• solution: more links, i.e.,
better connectivity
in the network

Localised link failures 20 / 28

A tale of two synchronous generals

• unsolvable even if the
system is synchronous

• nodes cannot achieve
common knowledge
if the only link can fail

• broadcast not possible⇒ common knowledge
not possible

• solution: more links, i.e.,
better connectivity
in the network

Localised link failures 21 / 28

Assumptions

Restrictions in this section:
• fully synchronous
• at most F links can fail, and only permanently
• failure by send-receive omissions:

a failed link drops some of its messages
• less restrictive than crashing, but happens to be

easy to handle here

(Non-permanent link failures in next presentation.)

F links can fail, synchronous

Localised link failures 22 / 28

Edge connectivity

Edge connectivity, cedge(G)

For graph G, cedge(G) = k if there are k (but not k + 1)
edge-disjoint paths between all pairs of nodes.

The graph G is k-edge-connected, if cedge(G) ≥ k.

Common knowledge cannot be achieved (in all possible
networks) unless cedge(G) ≥ F + 1.

F links can fail

Localised link failures 23 / 28

Computing with faulty links

If the network is F + 1-edge-connected, consensus and most
computations can be done, even in an asynchronous system:

• because broadcasting can be done,
e.g., with protocol Flood

• Flood is independent of F

• even with faulty links, Flood is optimal in
time O(diam(G ′)) and message complexity ≤ 2 ·m(G)

(assuming no knowledge of the topology of the network)

F links can fail, F + 1-edge-connected, synchronous

Localised link failures 24 / 28

Example: Broadcasting in a complete graph

Without failures, broadcasting is trivial: n − 1 messages.

If F < n − 1 of the n(n − 1)/2 links can fail:
• Flood works, but uses (n − 1)2 messages
• the following protocol uses only (F + 1)(n − 1) messages

to broadcast the information i

Protocol TwoSteps

1. x sends 〈Info, i〉 to F + 1 neighbours

2. each y that receives it sends 〈Echo, i〉 to all its neighbours

F < n − 1 links can fail, complete graph, asynchronous

Localised link failures 25 / 28

Example: Simple election in a complete graph

A simple strategy for Election is to use a fault-tolerant
broadcasting protocol:

FT-BcastElect
1. Each node x broadcasts id(x).

2. When all IDs have been received, x becomes the leader
iff its ID is the smallest.

The cost depends on the broadcast protocol:
using TwoSteps, n(F + 1)(n − 1) messages are used.

F < n − 1 links can fail, complete graph, asynchronous

Localised link failures 26 / 28

Example: More efficient election in a complete graph
Changes to CompleteElect: works if F ≤ (n − 6)/2

• x sends Capture to rF neighbours (in stage 1)
or (r − 1)F neighbours (stage > 1)

• no waiting after Warning messages (and no settlement)
• stage sx increases only when (r − 1)F Accept messages

have arrived from the current stage
• Capture messages are sent only at the start of a new stage
• termination: if sx = (n + 2)/2F, then x becomes leader

and broadcasts this using TwoSteps

The selectable parameter r gives a messages/time tradeoff:
Time Messages

any r: O(n
(r−1)F) O(nrF + nr

(r−1)
log n

(r−1)F)

r = 2: O(n/F) O(nF + n log(n/F))

F ≤ (n − 6)/2 links can fail, complete graph, asynchronous

Localised link failures 27 / 28

More on complete graphs

Open problem:

Is it possible to elect a leader using O(nF) messages
if F < n − 1 links can fail?

A much larger total number of failures can also be tolerated:
if at most f < n/2 incident links at each node may fail
(F < (n2 − 2n)/2), consensus can be achieved in
O(n2) messages.

F links can fail, complete graph, asynchronous

Summary 28 / 28

Summary

Ways to work around the Single-Fault Disaster problem:
• randomisation works, but gives up certainty
• failure detection is a good solution

for many computations?
• pre-execution failures help, but are not very realistic

Permanent link failures:
• are not a difficult problem if the edge connectivity

can be increased (i.e., more hardware costs)
• but is the model that only F links can ever fail

realistic enough?

	Using randomisation
	Failure detection
	Pre-execution failures
	Localised link failures
	Summary

