More techniques for localised failures

Riku Saikkonen

4th April 2007

Based on sections 7.4–7.7 of N. Santoro: Design and Analysis of Distributed Algorithms, Wiley 2007.
Ways of avoiding the Single-Fault Disaster theorem:

- synchronous systems (previous presentation)
- randomisation
- failure detectors
- pre-execution failures

And a slightly different topic:

- localised permanent link failures
Restrictions

Assumptions for all the node failure topics:

- connectivity, bidirectional links, unique IDs
- complete graph
- at most f nodes can fail, and only by crashing
- (asynchronous system)
Using randomisation
Uncertainty

Non-determinism \Rightarrow uncertain results
\Rightarrow a probability distribution on executions

Types of randomised protocols:

Monte Carlo always terminates
correct result with high probability

Las Vegas always correct
terminates with high probability

Hybrid both with high probability
Example: Randomised asynchronous consensus

Consensus problem:
- nodes have initial values 0 or 1
- goal: all non-faulty nodes decide on a common value
- non-triviality: if all values are the same, select that one

Las Vegas protocol Rand-Omit (next slide):
- solves Consensus with up to $f < n/2$ crash failures
- additional restriction: Message Ordering
Algorithm Rand-Omit

pref ← initial value; r ← 1;
repeat
 Send ⟨VOTE, r, pref⟩ to all.
 Receive n − f VOTE messages.
 if all have the same value v
 then found ← v else found ← ?;
 Send ⟨RATIFY, r, found⟩ to all.
 Receive n − f RATIFY messages.
 if one or more have a value w ≠ ? then
 pref ← w;
 if all have the same w and not decided yet then
 Decide on w.
 else pref ← 0 or 1 randomly;
 r ← r + 1
until one round after we made our decision

f < n/2 crashed nodes, Message Ordering, complete graph, asynchronous
Algorithm Rand-Omit

```plaintext
pref ← initial value; r ← 1;
repeat
    stage 1
    Send \langle VOTE, r, pref \rangle to all.
    Receive \( n - f \) VOTE messages.
    if all have the same value \( v \)
        then found ← \( v \)
        else found ← ?;
    stage 2
    Send \langle RATIFY, r, found \rangle to all.
    Receive \( n - f \) RATIFY messages.
    if one or more have a value \( w \neq ? \) then
        pref ← \( w \);
        if all have the same \( w \) and not decided yet then
            Decide on \( w \).
    else pref ← 0 or 1 randomly;
    r ← r + 1
until one round after we made our decision
```

\(f < n/2 \) crashed nodes, Message Ordering, complete graph, asynchronous
Algorithm Rand-Omit
pref ← initial value; r ← 1;
repeat

<table>
<thead>
<tr>
<th>stage 1</th>
<th>Send ⟨VOTE, r, pref⟩ to all.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Receive n − f VOTE messages.</td>
</tr>
<tr>
<td></td>
<td>if all have the same value v</td>
</tr>
<tr>
<td></td>
<td>then found ← v else found ← ?;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>stage 2</th>
<th>Send ⟨RATIFY, r, found⟩ to all.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Receive n − f RATIFY messages.</td>
</tr>
<tr>
<td></td>
<td>if one or more have a value w ≠ ? then</td>
</tr>
<tr>
<td></td>
<td>pref ← w;</td>
</tr>
<tr>
<td></td>
<td>if all have the same w and not decided yet then or: > f</td>
</tr>
<tr>
<td></td>
<td>Decide on w.</td>
</tr>
<tr>
<td></td>
<td>else pref ← 0 or 1 randomly;</td>
</tr>
<tr>
<td></td>
<td>r ← r + 1</td>
</tr>
<tr>
<td></td>
<td>until one round after we made our decision</td>
</tr>
</tbody>
</table>

f < n/2 crashed nodes, Message Ordering, complete graph, asynchronous
Analysis of Rand-Omit

Lemma: If $\text{pref}_x(r) = v$ for every correct x, then all correct entities decide on v in that round r.

Lemma: In every round r, for all correct x, either $\text{found}_x(r) \in \{0, ?\}$ or $\text{found}_x(r) \in \{1, ?\}$.

Lemma: If x makes the first decision on v at round r, then all nonfaulty nodes decide v by round $r + 1$.

Lemma: Let “success” = prefs of correct nodes identical. Then $\Pr[\text{success within } k \text{ rounds}] \geq 1 - (1 - 2^{-(n-f)})^k$.

⇒ Rand-Omit terminates with probability 1.

Theorem (very non-trivial)

If $f = O(\sqrt{n})$, the expected number of rounds in Rand-Omit is constant (i.e., independent of n).
Reducing the number of rounds

Protocol Committee

- create \(k = O(n^2) \) committees, each having \(s = O(\log n) \) nodes as members
- select the members such that at most \(O(n) = O(\sqrt{k}) \) committees are faulty, i.e., have \(> s/3 \) faulty nodes
- each committee simulates one entity of Rand-Omit
- a nonfaulty committee must work together and use its own (common) random numbers
- \(O(\sqrt{k}) \) faulty committees, so the expected number of simulated Rand-Omit rounds is constant
- time for simulating one round is \(O(\text{coin flips}) = O(\max. \text{ faulty members in a nonfaulty committee}) = O(s) = O(\log n) \)
Failure detection

\[f \] crashed nodes, IDs known, complete graph, asynchronous
Using failure detection

The Single-Fault Disaster theorem requires that faults cannot be detected.

- a reliable failure detector would make the problem solvable
- …but cannot be constructed in practice (except for synchronous systems)
- an unreliable failure detector is often good enough!
Using failure detection

The Single-Fault Disaster theorem requires that faults cannot be detected.

- a reliable failure detector would make the problem solvable
- …but cannot be constructed in practice (except for synchronous systems)
- an unreliable failure detector is often good enough!

Failure detectors are distributed: each node suspects some of its possibly faulty neighbours.

- additional restriction here: IDs of neighbours known
Classification of unreliable failure detectors

<table>
<thead>
<tr>
<th>Completeness property</th>
<th>“can’t suspect nothing”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong completeness</td>
<td>eventually every failed node is permanently suspected by every correct node</td>
</tr>
<tr>
<td>Weak completeness</td>
<td>eventually every failed node is permanently suspected by some correct node</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accuracy property</th>
<th>“can’t suspect everything”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perpetual strong</td>
<td>no node suspected before it crashes</td>
</tr>
<tr>
<td>Perpetual weak</td>
<td>some correct node is never suspected</td>
</tr>
<tr>
<td>Eventual strong</td>
<td>eventually no correct nodes are suspected</td>
</tr>
<tr>
<td>Eventual weak</td>
<td>eventually one correct node is not suspected</td>
</tr>
</tbody>
</table>

\(f \) crashed nodes, IDs known, complete graph, asynchronous
The weakest useful failure detector

Weak completeness to strong completeness

Algorithm to transform weak D_x to strong D'_x in node x:

** initialise:** $D'_x \leftarrow \emptyset$

** run repeatedly:** Send $\langle x, D_x \rangle$ to all neighbours.

** when receiving $\langle y, s \rangle$:** $D'_x \leftarrow D'_x \cup s - \{y\}$

• preserves accuracy properties

Theorem

Weak completeness and eventual weak accuracy are sufficient for reaching consensus with $f < n/2$ crashes.

f crashed nodes, IDs known, complete graph, asynchronous
Pre-execution failures
Pre-execution failures are different

The Single-Fault Disaster theorem relies on choosing the failed node and the time of failure during the execution of the protocol.

New restriction: Partial Reliability

- no failures occur during the computation
- at most f nodes have crashed before the protocol starts
- but we still do not know which nodes have failed
Recap: Efficient election in a complete graph
The CompleteElect algorithm from a previous presentation:

CompleteElect no failures, n nodes, k initiators

States: candidate (initial), captured, passive
Define: $s_x =$ number of nodes that x has captured (“stage”)

Basic algorithm:

- Candidate x sends $\langle\text{Capture, } s_x, \text{id}(x)\rangle$ to a neighbour y.
- If y is passive, the attack succeeds.
- If y is a candidate, the attack succeeds if $s_x > s_y$, or $s_x = s_y$ and $\text{id}(x) < \text{id}(y)$; otherwise x becomes passive.
- If y is captured: y sends $\langle\text{Warning, } s_x, \text{id}(x)\rangle$ to its owner (unless s_x is too small), which replies Yes or No; y will wait for this result before issuing another Warning.

Message complexity $O(n \log n)$, time $O(n)$.

no failures, k initiators, complete graph, asynchronous
Example: Election with Partial Reliability

Changes to CompleteElect: $f < \lceil n/2 \rceil + 1$

- x sends Capture to $f + 1$ neighbours (not 1)
- if x receives Accept, send one new Capture (i.e., still $f + 1$ Captures pending)
- was: unsuccessful attack (Reject message) $\Rightarrow x$ passive; now, s_x may have increased from other Captures
 - x must reject Rejects if s_x has become too large
 - this is done by settlement: x sends a new Capture to y and waits for its reply, queuing all other messages

- Warning-waits and settlement work because y must be nonfaulty due to Partial Reliability
- settlements cannot create a deadlock (because of asymmetry in s_x and s_y)

Partial Rel., $f < \lceil n/2 \rceil + 1$ crashed nodes, k initiators, complete graph, asynch.
Analysis of Election with Partial Reliability

Lemma: Every node x reaches $s_x > n/2$ or ceases to be a candidate.

Lemma: Let x be a candidate and s its final size. The total number of Capture messages from x is $\leq 2s + f$.
($f + 1$ initially, $\leq s - 1$ after Accepts, $\leq s$ replies to Rejects)

Lemma: $s_x \leq n/l$ if there are $l - 1$ candidates whose final size is not smaller than that of candidate x.

\[\cdots \Rightarrow \text{Messages: } \leq n - 1 + 4 \cdot \sum_{j=1}^{k} (2(n/j) + f) \]

FT-CompleteElect is worst-case optimal:

Message complexity: $O(n \log k + kf)$
$\Omega(n \log k)$ for fault-tolerant election + $\Omega(kf)$ initial Captures

Partial Rel., $f < \lceil n/2 \rceil + 1$ crashed nodes, k initiators, complete graph, asynch.
Localised link failures
A tale of two synchronous generals
A tale of two synchronous generals

- unsolvable even if the system is synchronous
- nodes cannot achieve common knowledge if the only link can fail

solution: more links, i.e., better connectivity in the network
A tale of two synchronous generals

- unsolvable even if the system is synchronous
- nodes cannot achieve common knowledge if the only link can fail
- broadcast not possible \(\Rightarrow\) common knowledge not possible
- solution: more links, i.e., better connectivity in the network
Assumptions

Restrictions in this section:

- fully synchronous
- at most F links can fail, and only permanently
- failure by send-receive omissions:
 a failed link drops some of its messages
 - less restrictive than crashing, but happens to be easy to handle here

(Non-permanent link failures in next presentation.)
Edge connectivity

For graph G, $c_{edge}(G) = k$ if there are k (but not $k + 1$) edge-disjoint paths between all pairs of nodes.

The graph G is k-edge-connected, if $c_{edge}(G) \geq k$.

Common knowledge cannot be achieved (in all possible networks) unless $c_{edge}(G) \geq F + 1$.
Computing with faulty links

If the network is $F + 1$-edge-connected, consensus and most computations can be done, even in an asynchronous system:

- because broadcasting can be done, e.g., with protocol Flood
- Flood is independent of F
- even with faulty links, Flood is optimal in time $O(diam(G'))$ and message complexity $\leq 2 \cdot m(G)$ (assuming no knowledge of the topology of the network)
Example: Broadcasting in a complete graph

Without failures, broadcasting is trivial: \(n - 1 \) messages.

If \(F < n - 1 \) of the \(n(n - 1)/2 \) links can fail:

- Flood works, but uses \((n - 1)^2 \) messages
- the following protocol uses only \((F + 1)(n - 1) \) messages to broadcast the information \(i \)

Protocol TwoSteps

1. \(x \) sends \(\langle \text{Info, i} \rangle \) to \(F + 1 \) neighbours
2. each \(y \) that receives it sends \(\langle \text{Echo, i} \rangle \) to all its neighbours

\(F < n - 1 \) links can fail, complete graph, asynchronous
Example: Simple election in a complete graph

A simple strategy for Election is to use a fault-tolerant broadcasting protocol:

FT-BcastElect

1. Each node x broadcasts $id(x)$.
2. When all IDs have been received, x becomes the leader iff its ID is the smallest.

The cost depends on the broadcast protocol: using TwoSteps, $n(F + 1)(n - 1)$ messages are used.
Example: More efficient election in a complete graph

Changes to CompleteElect: works if $F \leq (n - 6)/2$

- x sends Capture to rF neighbours (in stage 1) or $(r - 1)F$ neighbours (stage > 1)
- no waiting after Warning messages (and no settlement)
- stage s_x increases only when $(r - 1)F$ Accept messages have arrived from the current stage
- Capture messages are sent only at the start of a new stage
- termination: if $s_x = (n + 2)/2F$, then x becomes leader and broadcasts this using TwoSteps

The selectable parameter r gives a messages/time tradeoff:

<table>
<thead>
<tr>
<th>Time</th>
<th>Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{O}(n/\max((r-1)F, r-1))$</td>
<td>$\mathcal{O}(nrF + n \log \max((r-1)F, r-1))$</td>
</tr>
</tbody>
</table>
- $r = 2$: $\mathcal{O}(n/F)$ $\mathcal{O}(nF + n \log(n/F))$

$F \leq (n - 6)/2$ links can fail, complete graph, asynchronous
More on complete graphs

Open problem:
Is it possible to elect a leader using $O(nF)$ messages if $F < n - 1$ links can fail?

A much larger total number of failures can also be tolerated: if at most $f < n/2$ incident links at each node may fail ($F < (n^2 - 2n)/2$), consensus can be achieved in $O(n^2)$ messages.
Ways to work around the Single-Fault Disaster problem:
 - randomisation works, but gives up certainty
 - failure detection is a good solution for many computations?
 - pre-execution failures help, but are not very realistic

Permanent link failures:
 - are not a difficult problem if the edge connectivity can be increased (i.e., more hardware costs)
 - but is the model that only F links can ever fail realistic enough?