Election in Trees and Rings

T-79.4001 Seminar on Theoretical Computer Science

Ilari Nieminen

21.02.2007
Outline

Leader Election
- Election
- Impossibility Result
- Solution Strategies

Election in Trees
- Elect Minimum and Elect Root
- Performance

Election in Rings
- General
- All the Way
- As Far As It Can
- Controlled Distance
Outline

Leader Election
 Election
 Impossibility Result
 Solution Strategies

Election in Trees
 Elect Minimum and Elect Root
 Performance

Election in Rings
 General
 All the Way
 As Far As It Can
 Controlled Distance
Notation

- n is the number of nodes, m is the number of edges
- Standard set of restrictions
 - $R = \{ \text{Bidirectional Links, Connectivity, Total Reliability} \}$
- $N(x)$ is the set of neighbours of x
- $M[P]$ is the number of messages needed in protocol P
- $T[P]$ is the time required in protocol P
- $B[P]$ is the number of bits needed in protocol P
Leader Election (\textbf{Elect})

- In the initial configuration all entities are in the same state ("available")
- In the goal configuration all but one are in the same state ("follower")
- Can be thought as enforcing restriction \textit{Unique Initiator}
Problem **Elect** is *deterministically unsolvable* under R

- Means that there is no protocol that will terminate correctly in finite time
- Easy to prove with two entities when communication delays are unitary
Election’s Standard Set of Restrictions

Restriction *Initial Distinct Values* (ID) is chosen to break the symmetry between entities. Set $\mathbb{IR} = \mathbb{R} \cup \{\text{ID}\}$ is called the *standard set for election*. $\text{id}(x)$ is used to denote the distinct value of entity x.
Elect Minimum

1. Find the smallest value $id(x)$
2. Elect the entity with that value as a leader

This strategy also solves Min.
Elect Minimum Initiator

1. Find the smallest value $id(x)$ among initiators
2. Elect the entity with that value as a leader

Does not solve Min.

Ilari Nieminen
Elect Root

1. Construct a rooted spanning tree
2. Elect the root of the tree as the leader
Outline

Leader Election
 Election
 Impossibility Result
 Solution Strategies

Election in Trees
 Elect Minimum and Elect Root
 Performance

Election in Rings
 General
 All the Way
 As Far As It Can
 Controlled Distance
Elect Minimum in Trees

Tree: Elect_Min

- Using saturation, find the smallest value
- $M[\text{Tree : Elect_Min}] = 3n + k_\ast - 4 \leq 4n - 4$
Elect Root

- *Full Saturation* selects two saturated nodes
- *Tree:Elect_Root* compares the identities of the saturated nodes
- $M[\text{Tree : Elect}_\text{Root}] = 3n + k_\star - 2 \leq 4n - 2$
Tree: Elect_Root

SATURATED

Receiving(Election, id)

begin
 if id(x) < id then
 become LEADER
 else
 become FOLLOWER
end

send (Termination) to N(x)-{parent}
end

PROCESSING

Receiving(Termination)

begin
 become FOLLOWER
 send (Termination) to N(x)-{parent}
end

Procedure Resolve

begin
 send (Election, id(x)) to parent
 become SATURATED
end
Bit Complexity

- **Tree: Elect_Root** sends two more messages than **Tree: Elect_Min**
- Number of bits needed is lower for **Tree: Elect_Root**

\[B[Tree: Elect_Root] = 2(c + \log id) + c(3n + k_\ast - 2) \]

\[B[Tree: Elect_Min] = n(c + \log id) + c(2n + k_\ast - 2) \]

where \(c = O(1) \) denotes the number of bits needed to distinguish between messages.
Outline

Leader Election
- Election
- Impossibility Result
- Solution Strategies

Election in Trees
- Elect Minimum and Elect Root
- Performance

Election in Rings
- General
- All the Way
- As Far As It Can
- Controlled Distance
Rings

- A ring consists of a single cycle of length n
- Each entity has exactly two neighbours, whose ports are called “right” and “left”
- It is important to note that this labeling might be inconsistent between entities
- Notation: other is used to denote $N(x)$-sender
- Any protocol that elects a leader in a ring can be made to find the minimum value with n additional messages
All the Way

- On becoming awake entity sends a message to one of its neighbours containing its id
- On receiving a message it forwards the message and keeps note of the smallest id seen
- Because the *Message Ordering* restriction is not used, an entity won’t know that the election is finished when it receives its value back
- To calculate the size of the ring, a counter is added to the message
- Does not actually need the *Bidirectional Links* restriction
All the Way Protocol

States: \(S = \{ \text{ASLEEP, AWAKE, FOLLOWER, LEADER} \} \)

\(S_{\text{INIT}} = \{ \text{ASLEEP} \} \)

\(S_{\text{TERM}} = \{ \text{FOLLOWER, LEADER} \} \)

ASLEEP

Spontaneously

begin
 INITIALIZE
 become AWAKE
end

Receiving(“Election”, value\(^*\), counter\(^*\))

begin
 INITIALIZE
 send (“Election”, value\(^*\), counter\(^*\) +1) to other
 count := count+1
 min := Min{min, value\(^*\)}
 if known then
 CHECK
 end

end

AWAKE

Receiving(“Election”, value\(^*\), counter\(^*\))

begin
 if value\(^*\) \neq id(x) then
 send (“Election”, value\(^*\), counter\(^*\) +1) to other
 min := Min{min, value\(^*\)}
 count := count+1
 if known then
 CHECK
 end
 else
 ringsize := counter\(^*\)
 known := true
 CHECK
 end

end
All the Way Procedures

Procedure INITIALIZE
begin
 count := 0
 size := 1
 known := false
 send ("Election", id(x), size) to right; min := id(x)
end

Procedure CHECK begin
 if count = ringsize then
 if min = id(x) then
 become LEADER
 else
 become FOLLOWER
 else
 become FOLLOWER
 end
end
All the Way and All the Way Minimum Initiator

- The cost of *All the Way* is easily seen
 - $M[AlltheWay] = n^2$
 - $T[AlltheWay] \leq 2n - 1$
- By modifying the protocol to find the smallest value among the initiators number of messages can be reduced
 - $M[AlltheWay : Minit] = nk_\star + n$
 - $T[AlltheWay : Minit] \leq 3n - 1$
- The additional n is required to inform the ring of termination.
As Far As It Can

- The drawback of *All the Way* is that every message travels the whole ring
- *All the Way* is modified so that an entity will only forward Election messages if the id in the message is smaller than the smallest seen so far
- The message with the smallest id will travel the entire ring, so if an entity receives its own id, it knows it is the leader
- The leader notifies the ring to ensure termination
As Far As It Can Message Complexity

- Worst case happens if the ring is “ordered” and all the messages are sent in the “increasing” direction.
 \[M[AsFar] = n + \sum_{i=1}^{n} i = \frac{n(n+3)}{2} \]
- Average case is harder. Let \(H_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \)
 \[M[AsFar] = nH_n \approx 0.69n \log_2 n + O(n) \text{ on average in oriented (or unidirectional) rings} \]
 \[M[AsFar] = \frac{\sqrt{2}}{2} nH_n \approx 0.49n \log_2 n + O(n) \text{ on average in unoriented rings (assuming half of the “rights” correspond to the clockwise direction)} \]
- \[T[AsFar] = T[AlltheWay] + n - 1 \]
Controlled Distance

- The downside with *As Far As It Can* is that $O(n^2)$ performance is still possible.
- *Controlled Distance* has guaranteed $O(n \log n)$ message performance.
- Idea is to limit the distance a message can travel and send multiple messages if necessary.
Controlled Distance Basics

1. Entity x sends a message with its own id, and the message will travel until it is terminated (by a smaller id) or until it reaches a distance dis.

2. If the message is not terminated, it will be sent back to its originator. After receiving the returned message, it knows there are no smaller ids on that side of the ring within distance dis.

3. To confirm that there are no smaller ids on either side, the entity will send the message in both directions. If they both come back, next time the message will be allowed to travel further.
Controlled Distance Basics (cont.)

4. If at any time an entity receives a message with a smaller id, it will stop trying to win the election

5. If an entity receives its own message back from the other side, it knows it is the leader and notifies the ring
The correctness can intuitively be understood through the following observations:

- Messages containing the smallest id will always travel the maximum allocated distance.
- Every candidate that meets the messages will give up.
- Allocated distance is increased monotonically, so at some point, a message with the minimum id will travel through the whole ring.
Protocol Control

States: \(S = \{ \text{ASLEEP}, \text{CANDIDATE}, \text{DEFEATED}, \text{FOLLOWER}, \text{LEADER} \} \)

\(S_{\text{INIT}} = \{ \text{ASLEEP} \} \)

\(S_{\text{TERM}} = \{ \text{FOLLOWER}, \text{LEADER} \} \)

ASLEEP

Spontaneously

begin

 INITIALIZE

 become CANDIDATE;

end

Receiving("Forth", id*, stage*, limit*)

begin

 if id* < id(x) then
 PROCESS-MESSAGE
 become DEFEATED
 else
 INITIALIZE
 become CANDIDATE
 end

end

DEFEATED

Receiving(*)

begin

 send (*) to other
 if * = "Notify" then
 become FOLLOWER
 end

end

CANDIDATE

Receiving("Forth", id*, stage*, limit*)

begin

 if id* < id(x) then
 PROCESS-MESSAGE
 become DEFEATED
 else
 if id* = id(x) then
 NOTIFY
 end
 end

end

Receiving("Back", id*)

begin

 if id* = id(x) then
 CHECK
 end

end

Receiving("Notify")

begin

 send ("Notify") to other
 become FOLLOWER

end
Procedures of protocol Control

Procedure INITIALIZE
begin
 stage := 1
 limit := dis(stage)
 count := 0
 send ("Forth", id(x), stage, limit) to N(x)
end

Procedure PROCESS-MESSAGE
begin
 limit* := limit* - 1
 if limit* = 0 then
 send ("Back", id*, stage*) to sender
 else
 send ("Forth", id*, stage*, limit*) to other
 end
end

Procedure CHECK
begin
 count := count+1
 if count = 2 then
 count := 0
 stage := stage+1
 limit := dis(stage)
 send ("Forth", id(x), stage, limit) to N(x)
 end
end

Procedure NOTIFY
begin
 send ("Notify") to right
 become LEADER
end
Message Complexity of Control

- Performance depends on choice of dis(i)
- Let \(\text{dis}^{-1}(n) \) denote smallest integer \(k \) such that \(\text{dis}(k) \geq n \).
 \[
 M[\text{Control}] \leq n \sum_{i=1}^{\text{dis}^{-1}(n)} \left(3 \frac{\text{dis}(i)}{\text{dis}(i-1)} + 1 \right) + n
 \]
- If distance is doubled at each stage
 \[
 M[\text{Control}] \leq 7n \log n + O(n)
 \]
- \(T[\text{Control}] \leq 2n + \sum_{i=1}^{\text{dis}^{-1}(n)} 2\text{dis}(i) \)