
Advanced routing topics

Tuomas Launiainen

Suboptimal routing

Routing trees

Measurement of routing trees

Adaptive routing

Problems

Fault-tolerant tables

Point-of-failure rerouting

Point-of-failure shortest path rerouting

Correctness

Compact tables

Routing with interwals

Restrictions used:

I Bidirectional Links (BL)

I Connectivity (CN)

I Total Reliability (TR)

I Initial Distinct Values (ID)

Suboptimal routing

I Optimal (shortest path guaranteed) routing is expensive

I Suboptimal routing does not guarantee shortest paths, but is
often sufficient

Routing trees

Routing can be done using a single spanning tree, a routing tree.
All messages are passed using only the edges in the routing tree.

I Relatively easy to construct

I Guaranteed delivery

I Guaranteed to use no more messages than the diameter of the
tree

Centre-based routing tree

Since messages are delivered with no more than diam(T) hops in a
routing tree T , one logical choise for the routing tree is one rooted
at the centre of the graph (a node that has the smallest distance
to the farthest node from it).

Construction:

1. Find the centre of the graph

2. Construct the shortest path spanning tree for that node

The diameter of the spanning tree is bound from above:
diam(G) ≤ diam(PT(c)) ≤ 2diam(G).

Centre-based routing tree

Since messages are delivered with no more than diam(T) hops in a
routing tree T , one logical choise for the routing tree is one rooted
at the centre of the graph (a node that has the smallest distance
to the farthest node from it).

Construction:

1. Find the centre of the graph

2. Construct the shortest path spanning tree for that node

The diameter of the spanning tree is bound from above:
diam(G) ≤ diam(PT(c)) ≤ 2diam(G).

Centre-based routing tree

Since messages are delivered with no more than diam(T) hops in a
routing tree T , one logical choise for the routing tree is one rooted
at the centre of the graph (a node that has the smallest distance
to the farthest node from it).

Construction:

1. Find the centre of the graph

2. Construct the shortest path spanning tree for that node

The diameter of the spanning tree is bound from above:
diam(G) ≤ diam(PT(c)) ≤ 2diam(G).

Median-based routing tree

Since a tree has no loops, each edge e = (x , y) of the routing tree
splits the tree in two: T [x − y], and T [y − x]. This means that
every message passing from one half to the other must go through
e, the use of which costs θ(e).

If all nodes send the same amount of messages on average, and
the destinations are evenly distributed independent of the sender,
the overall average cost of using T for routing is relative to:

∑
(x ,y)∈T

|T [x − y]| |T [y − x]| θ((x , y))

This is also the sum of all distances between every pair of nodes.

Median-based routing tree

Since a tree has no loops, each edge e = (x , y) of the routing tree
splits the tree in two: T [x − y], and T [y − x]. This means that
every message passing from one half to the other must go through
e, the use of which costs θ(e).

If all nodes send the same amount of messages on average, and
the destinations are evenly distributed independent of the sender,
the overall average cost of using T for routing is relative to:

∑
(x ,y)∈T

|T [x − y]| |T [y − x]| θ((x , y))

This is also the sum of all distances between every pair of nodes.

Median-based routing tree

Since a tree has no loops, each edge e = (x , y) of the routing tree
splits the tree in two: T [x − y], and T [y − x]. This means that
every message passing from one half to the other must go through
e, the use of which costs θ(e).

If all nodes send the same amount of messages on average, and
the destinations are evenly distributed independent of the sender,
the overall average cost of using T for routing is relative to:

∑
(x ,y)∈T

|T [x − y]| |T [y − x]| θ((x , y))

This is also the sum of all distances between every pair of nodes.

Median-based routing tree (contd.)

If message passing is evenly distributed, the overall cost of a
routing tree can be minimized by minimizing the sum of every
distance in the tree. Unfortunately constructing such a tree is
difficult.

A near-optimal solution, a median-based routing tree, is simple to
construct, however. The median node of a graph is one that has
the smallest sum of distances to every other node.

The average cost of a median-based routing tree is (claimed to be)
no worse than twice the average cost of the cost-minimizing
routing tree.

Median-based routing tree (contd.)

If message passing is evenly distributed, the overall cost of a
routing tree can be minimized by minimizing the sum of every
distance in the tree. Unfortunately constructing such a tree is
difficult.

A near-optimal solution, a median-based routing tree, is simple to
construct, however. The median node of a graph is one that has
the smallest sum of distances to every other node.

The average cost of a median-based routing tree is (claimed to be)
no worse than twice the average cost of the cost-minimizing
routing tree.

Median-based routing tree (contd.)

If message passing is evenly distributed, the overall cost of a
routing tree can be minimized by minimizing the sum of every
distance in the tree. Unfortunately constructing such a tree is
difficult.

A near-optimal solution, a median-based routing tree, is simple to
construct, however. The median node of a graph is one that has
the smallest sum of distances to every other node.

The average cost of a median-based routing tree is (claimed to be)
no worse than twice the average cost of the cost-minimizing
routing tree.

Minimum-cost routing tree

Another natural choise is the spanning tree that minimizes the sum
of costs of it’s edges. It can be constructed with e.g. MegaMerger.

Measurement of routing trees

Examine how much a routing tree stretches the distance between
two nodes.

I Strecth factor: the maximum streching between nodes:
max
x ,y∈V

dT (x ,y)
dG (x ,y)

I Dilation: the maximum length between neighbours in the
original graph: max

(x ,y)∈E
dT (x , y)

I Edge-stretch factor: maximum stretch of an edge:
max

(x ,y)∈E

dT (x ,y)
θ((x ,y)) (also called the dilation factor)

I Also average stretch factor and average dilation factor

Adaptive routing

Adaptive routing tries to handle routing in a system where the
costs of edges change.

I When the cost of a link (x , y) changes, both x and y are
notified

I The restriction Total Reliability is replaced with Total
Component Reliability

I New restriction Cost Change Detection

I A link failure can be described by setting it’s cost to ∞

Map Update

A näıve approach:

I Every node contains a complete map of the network

I When a node detects one of it’s links has changed, it updates
it’s map and sends an update-message to all it’s neighbours

I When a node receives an update-message, it updates it’s map
and passes the message to it’s other neighbours

I Periodic updates can be used even if no changes occur

This is very expensive, even more so with periodic messages. It
can, however, handle any amount and type of changes. E.g. the
second Internet routing protocol uses this scheme.

Vector Update

I Construct initial routing tables with Iterative Construction

I When a node detects a one of it’s links has changed, it
initiates a global update of routing tables, either by starting a
new execution of Iterative Construction, or a new round of
iterations, until the tables converge again

Starting a new round of iterations is preferable, since starting from
scratch is expensive. This scheme was used in the first Internet
routing protocol, but it has problems.

Vector Update (contd.)
Count-to-infinity problem

x y z w
1 1 1

cost to w : 1

Vector Update (contd.)
Count-to-infinity problem

x y z w
1 1 K

cost to w : ?

Vector Update (contd.)
Count-to-infinity problem

x y z w
1 1 K

cost to w : 3

Vector Update (contd.)
Count-to-infinity problem

x y z w
1 1 K

cost to w : 3cost to w : 4

Oscillation

A problem concerning many approaches is oscillation. It occurs
when the cost of using a link is proportional to the amount of
traffic through it.

x

z

w

y

If x wants to send lots of messages to y , the best path will start to
oscillate between z and w .

Fault-tolerant tables

Upholding optimal routing tables in a changing system is very
expensive. If suboptimal routes are allowed and link failures are
limited to a single link at a time (single-link crash failure),
fault-tolerant tables can be used to relay messages with minimal
communication.

Point-of-failure rerouting

I Each node stores two edge-disjoint paths to each destination.

I Messages are delivered through the shortest path from their
source to their destination, assuming no link crashes have
occurred.

I If the message arrives to a node whose link has crashed (point
of failure), it is rerouted to it’s destination via the alternate
path.

Suboptimal service is provided only when a crash occurs, and
information about crashes does not need to be relayed.

Point-of-failure shortest path rerouting
Swap edges

I In systems with bidirectional links, the shortest path from the
source node s to the target node t is contained in the shortest
path spanning tree rooted at t, PT(t). Each node x , x 6= t in
this tree has a parent pt(x).

I When a link et [x] = (x , pt(x)) in PT(t) fails, it disconnects
PT(t) into two subtrees.

I For each link et [x] in PT(t), there exists a link e not in PT(t)
that can reconnect the spanning tree if et [x] fails. e is called
the swap edge of et [x].

I The best swap edge is called the optimal swap.

Point-of-failure shortest path rerouting (contd.)
Routing tables

To provide point-of-failure shortest path rerouting, each node
needs to know the optimal swap in addition to the normal link for
each destination. It also needs to know the shortest path to the
optimal swap. The routing table of x thus has this row for each
destination t, where (u, v) is the optimal swap for (x , pt(x)):

Final Des-
tination

Normal
Link

Rerouting
Link

Swap Des-
tination

Swap Link

t (x , pt(x)) (x , pu(x)) u (u, v)

When a message reaches a point-of-failure node, the node then
sends the message towards the optimal swap.

Point-of-failure shortest path rerouting (contd.)
Algorithm (sort of)

All messages contain the following fields: final destination, swap
destination, swap link, and swap bit.

1. s sends a message to t: it sets the final destination to t, the
swap destination and swap link to empty, and the swap bit to
0.

2. An intermediate node x receives a message to t:

(a) If the swap bit is 0 and the normal link (x , pt(x)) is up, use
that.

(b) If the swap bit is 0 and the normal link (x , pt(x)) is down, set
the swap link and swap destination according to the routing
table, set the swap bit to 1, and send the message to the
rerouting link.

(c) If the swap bit is 1 and x = u, set the swap bit to 0 and use
the swap link in the message.

(d) If the swap bit is 1 and x 6= u, send the message towards u
using the routing table.

Point-of-failure shortest path rerouting (contd.)
Algorithm (sort of)

All messages contain the following fields: final destination, swap
destination, swap link, and swap bit.

1. s sends a message to t: it sets the final destination to t, the
swap destination and swap link to empty, and the swap bit to
0.

2. An intermediate node x receives a message to t:

(a) If the swap bit is 0 and the normal link (x , pt(x)) is up, use
that.

(b) If the swap bit is 0 and the normal link (x , pt(x)) is down, set
the swap link and swap destination according to the routing
table, set the swap bit to 1, and send the message to the
rerouting link.

(c) If the swap bit is 1 and x = u, set the swap bit to 0 and use
the swap link in the message.

(d) If the swap bit is 1 and x 6= u, send the message towards u
using the routing table.

Point-of-failure shortest path rerouting (contd.)
Algorithm (sort of)

All messages contain the following fields: final destination, swap
destination, swap link, and swap bit.

1. s sends a message to t: it sets the final destination to t, the
swap destination and swap link to empty, and the swap bit to
0.

2. An intermediate node x receives a message to t:

(a) If the swap bit is 0 and the normal link (x , pt(x)) is up, use
that.

(b) If the swap bit is 0 and the normal link (x , pt(x)) is down, set
the swap link and swap destination according to the routing
table, set the swap bit to 1, and send the message to the
rerouting link.

(c) If the swap bit is 1 and x = u, set the swap bit to 0 and use
the swap link in the message.

(d) If the swap bit is 1 and x 6= u, send the message towards u
using the routing table.

Point-of-failure shortest path rerouting (contd.)
Algorithm (sort of)

All messages contain the following fields: final destination, swap
destination, swap link, and swap bit.

1. s sends a message to t: it sets the final destination to t, the
swap destination and swap link to empty, and the swap bit to
0.

2. An intermediate node x receives a message to t:

(a) If the swap bit is 0 and the normal link (x , pt(x)) is up, use
that.

(b) If the swap bit is 0 and the normal link (x , pt(x)) is down, set
the swap link and swap destination according to the routing
table, set the swap bit to 1, and send the message to the
rerouting link.

(c) If the swap bit is 1 and x = u, set the swap bit to 0 and use
the swap link in the message.

(d) If the swap bit is 1 and x 6= u, send the message towards u
using the routing table.

Point-of-failure shortest path rerouting (contd.)
Algorithm (sort of)

All messages contain the following fields: final destination, swap
destination, swap link, and swap bit.

1. s sends a message to t: it sets the final destination to t, the
swap destination and swap link to empty, and the swap bit to
0.

2. An intermediate node x receives a message to t:

(a) If the swap bit is 0 and the normal link (x , pt(x)) is up, use
that.

(b) If the swap bit is 0 and the normal link (x , pt(x)) is down, set
the swap link and swap destination according to the routing
table, set the swap bit to 1, and send the message to the
rerouting link.

(c) If the swap bit is 1 and x = u, set the swap bit to 0 and use
the swap link in the message.

(d) If the swap bit is 1 and x 6= u, send the message towards u
using the routing table.

Correctness

Consider this example, where the blue node wants to send a
message to the green node, but just before the message reaches it,
the red link before it goes down.

We cannot make any guarantees that a message will arrive to it’s
destination. We can, however, guarantee that if the changes in the
system stop (for a long enough period), the message will be
delivered through the point-of-failure shortest path.

Correctness

Consider this example, where the blue node wants to send a
message to the green node, but just before the message reaches it,
the red link before it goes down.

We cannot make any guarantees that a message will arrive to it’s
destination. We can, however, guarantee that if the changes in the
system stop (for a long enough period), the message will be
delivered through the point-of-failure shortest path.

Compact tables

Routing tables are quite large:

I O(n2 log n) bits each for full routing tables

I O(n log n) bits each, if only destination-link pairs are stored
(for each destination t, the routing table of x stores the link
(x , pt(x)))

Without special knowledge about node naming and network
topology, this is about as good as we can get, since an entry needs
to be made for each destination.

Routing with interwals

I We can assume that all node names are integers between 0
and n − 1, inclusive.

I For two integers j and k, 0 ≤ j , k ≤ n − 1, an inteval is a
sequence:{

〈j , j + 1, . . . , k〉, if j ≤ k

〈j , j + 1, . . . , n − 1, 0, 1, . . . , k〉 if j > k

I Instead of storing destination-link pairs, a routing table can
store interwal-link pairs.

I Routing tables can be as small as O(log n).

I The ability to choose node names and knowledge about
network topology is needed.

Routing with interwals (contd.)
Example

0

7 2

36

1

45

right

The routing table of 0

Link Interwal

left (1, 4) = 〈1, 2, 3, 4〉
right (5, 7) = 〈5, 6, 7〉

In sorted and directed rings O(log n) can be achieved.

Routing with interwals (contd.)
Tree networks

Interwal routing can always be done in tree networks by renaming
the nodes by post-order traversal.

⇒

I Every node has a higher number than any of it’s children

I Every subtree contains only consecutive integers

Routing with interwals (contd.)
Tree example

15

0 1

2

3

4 5

6 7

121110

9

14

13

8

An example of a 16-node tree network with nodes named by
post-order traversal.

Routing with interwals (contd.)
Tree example (contd.)

8

(9, 3)

(7, 7)(4, 6)

The routing table of 8

Link Interwal

parent (9, 3) = 〈9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3〉
left (4, 6) = 〈4, 5, 6〉
right (7, 7) = 〈7〉

Routing with interwals (contd.)
Globe graph

Interwal routing is not always possible, however. Here is an
example of such a case, called a globe graph:

Suboptimal routing with interwals

If providing shortest path routing is not necessary, for any network
a routing tree can be constructed. As already seen, interwal
routing always works in trees.

Recap

I Optimal routing is expensive, but suboptimal, efficient, and
often good enough solutions exist. The primary method
covered here uses some spanning tree to route traffic.

I Adaptive routing tries to cope with changing costs of links.
Optimal solutions are very expensive, but e.g. point-of-failure
rerouting uses no extra communication after the initial
construction, and manages single-link crash failures. Message
delivery cannot be guaranteed while crashes continue to
occur, however.

I Complete routing tables are very large. The only way to get
below O(n log n) size per table is to use special knowledge
about the network.

Recap

I Optimal routing is expensive, but suboptimal, efficient, and
often good enough solutions exist. The primary method
covered here uses some spanning tree to route traffic.

I Adaptive routing tries to cope with changing costs of links.
Optimal solutions are very expensive, but e.g. point-of-failure
rerouting uses no extra communication after the initial
construction, and manages single-link crash failures. Message
delivery cannot be guaranteed while crashes continue to
occur, however.

I Complete routing tables are very large. The only way to get
below O(n log n) size per table is to use special knowledge
about the network.

Recap

I Optimal routing is expensive, but suboptimal, efficient, and
often good enough solutions exist. The primary method
covered here uses some spanning tree to route traffic.

I Adaptive routing tries to cope with changing costs of links.
Optimal solutions are very expensive, but e.g. point-of-failure
rerouting uses no extra communication after the initial
construction, and manages single-link crash failures. Message
delivery cannot be guaranteed while crashes continue to
occur, however.

I Complete routing tables are very large. The only way to get
below O(n log n) size per table is to use special knowledge
about the network.

	Suboptimal routing
	Routing trees
	Measurement of routing trees

	Adaptive routing
	Problems
	Fault-tolerant tables
	Point-of-failure rerouting
	Point-of-failure shortest path rerouting
	Correctness

	Compact tables
	Routing with interwals

