
T-79.4001 Seminar on Theoretical Computer Science
Spring 2007 – Distributed Computation

Distributed selection
Toni Kylmälä
toni.kylmala@tkk.fi

1

Distiributed Selection - Basics

Data
Data set:D =

S

x
Dx

Distribution of set to sites Dxi: {Dx1,Dx2, ...,Dxn}

Basic operations
1. queries
2. updates

2.1 insertion
2.2 deletion
2.3 change (but this can be seen as a deletion and an insertion).

Distribution of data set to sites x
Partitioning where two sites have no common elements:Di ∩D j = /0, i 6= j. This is very good
for updates but slow for queries.
Multiple-copy where every site has a copy of the entire data set.∀iDi = D . This is very good for
queries but bad for updates.
Generally we havepartially replicated data with problems from both extreme cases but no ad-
vantages from either.

2

Distiributed Selection - Basics

Restrictions
IR (Connectivity, Total Reliability, Bidirectional Links, Distinc Identifiers)
For simplicity we assume the data to be sorted locally at each entity.
We also assume that in case of ties with data elements being inmultiple sites we use ID:s to
brake ties and achieve a totally ordered set. We also assume a spanning tree for communication
and a single coordinating sites.

For efficiency the coordinators should be the center of the graph and the tree a shortest path
spanning tree fors.

Selection
The distributed selection problem is the general problem of locating D [K], the Kth smallest
element. Problems of this type are calledorder statistics.

Median
If size of setD N is odd. There is only one median.D [⌈N/2⌉]. If N is even we have alover
median D [N/2] and anupper median. D [N/2+1].

3

Distiributed Selection - Basics

Property 5.2.1
D [K] =

−→
D [N−K +1]. Kth smallest is the(N - K + 1)th largest element. This fact has important

consequences.

Property 5.2.2
If a site has more thanK elements then only the K smallest elements need be considered. Simi-
larly for (N - K + 1) elements only the (N - K + 1) largest elements need be considered.

4

Distiributed Selection - Small sets

Selection in a small setN = O(n)
Input collection Collecting all the data tos and letting it solve locally is feasible but an overkill.
M[Collect] = O(n2) in the worst case. (e.g. Ring)
Truncated ranking Making the messages depend on the value of K we can reduce the costs.
E.g. by using the existing tree ranking protocol (exercise 2.9.4 *).
M[Rank] = n∆.
∆ = Min{K, N - K + 1}. If ∆ is small Rank is much more efficient but as it grows to N/2 the two
protocols have the same cost.

Important
The two are generic protocols but it is possible to take advantage of the network topology. This
is the case for Ring, Mesh and Complete Binary Tree.

5

Distiributed Selection - Two sites special case

Selection among two sites
When N » n we need a more efficient protocol. Here n = 2.

Median finding
A lower median has exactly⌈N/2⌉ - 1 elements smaller than itself and⌊N/2⌋ larger than itself.
Thus comparing the local medians mx and my we can eliminate halt of all the elements.

Assume that |Dx| = |Dy| = N/2, N = 2i and that mx is larger. Then in Dx all the elements larger
than mx cannot be the median because they have N/4 in Dx and another N/4 in Dy for a total of
N/2 elements smaller than themselves. Thus they can all be removed.

The same applies for the elements in Dy smaller or equal than my. They have N/4 + 1 ele-
ments in Dx and N/4 elements in Dy for a total of N/2 + 1 elements larger than themselves. So
they cannot be medians and can be removed.

Consequence: The overall median is the median of the elementsleft.

Thus we simply reapply the process until only two elements are left and the global median
can be determined.

6

Distiributed Selection - Two sites special case

Cost of protocol: Halving
Each iteration halves the data set thus having log N iterations. Only on message per iteration is
required.

This can be generalised for arbitrarily sized sets without changing its complexity (Exercise
5.6.5).

7

Distiributed Selection - Two sites special case

FindingKth smallest element
Assume again that|Dx| = |Dy|.

Case K <⌈N/2⌉

There are more than K elements. Thus all elements larger than Di[K] can be discarded leav-
ing us with two sets of size K where finding the Kth smallest is finding the median.

Case K >⌈N/2⌉

We can now look for the (N - K + 1)th (<⌈N/2⌉) largest element thus similarly to the above
case we have an upper median finding problem.

Summary
K-selection can be transformed into median finding.

8

Distiributed Selection - General algorithms

General selection: RankSelect
With 10 to 100 sites and local data≥ 106 we need something else. Choose an item di out ofD and
count its rank d*. If d* < K then the item and all items smaller than it can not be the Kth item we
want. Similarly for d* > K. This allows us to reduce the size of thesearch space at each iteration.

Counting the rank is a trivial broadcast in a SP and a convercast tocollect the information.

Choosing di uniformly at random
It is possible (section 2.6.7 end exercise 2.9.52) to choose uniformly at random an item from the
setD in a tree in the initial set. Also after items have been removed (exercise 2.9.52 and exercise
5.6.10) with the same costs.

Also by choosing from a set of locally uniformly chosen and weighted values at coordinator.

9

Distiributed Selection - General algorithms

Costs of RandomSelect
Because in the worst case we only remove di for N iterations.
M[RandomSelect]≤ (4(n - 1) + r(s))N
T[RandomSelect]≤ 5r(s)N

However on average (Lemma 5.2.1) due to randomness:
MAverage[RandomSelect] = O(NlogN)
TAverage[RandomSelect] = O(NlogN)

10

Distiributed Selection - General algorithms

Random choice with reduction
Because Kth smallest = (N - K + 1)th largest each site can reduce its search space to∆i =
Min{K i,Ni−Ki + 1} before the random selection occurs.

M[RandomFlipSelect] =≤ (2(n - 1) + r(s))N
T[RandomFlipSelect] =≤ 3r(s)N

However on average (Lemma 5.2.2) due to randomness:
MAverage[RandomFlipSelect] = O(n(ln(∆) + ln(N)))
TAverage[RandomFlipSelect] = O(n(ln(∆) + ln(N)))

11

Distiributed Selection - General algorithm with a twist

Selection in a Random Distribution - taking advantage of distribution
knowledge

If all distributions are equally likely then we can get a representative of the entire set by choosing
from the largest site Dz at iteration i the hith smallest element where
hi = ⌈Ki(

mi+1
N+1)− 1

2⌉.
This will be used until there are less than n items under consideration and finish with Random-
FlipSelect.

Due to randomness (Lemma 5.2.3)
MAverage[RandomRandomSelect] = O(n(loglog(∆) + log(N)))
TAverage[RandomRandomSelect] = O(n(loglog(∆) + log(N)))

12

Distiributed Selection - General algorithms with guaranteed reasonable costs

Filtering
For systems where a guaranteed reasonable cost even in the worst case is required. This can be
achieved e.g. with strategy RandomSelect with the appropriatechoice of di.

Let Di
x denote the elements of site x in iteration i and ni

x = |Di
x| denote its size. Consider the

(lower) median dix = Di
x[⌈ ni

x/2 ⌉] of Di
x and let Mi = {d i

x} be the set of these medians. Associate
a weight, the size of set x, to each median and choose di to be the weighted (lower) median of Mi.

Lemma 5.2.4 (and exercise 5.6.18): Iterations until n elements areleft is at most 2.41 log(N/n).
At each iteration determining the median of set Mi can be done using protocol Rank because we
only have n elements. In the worst case it requires O(n2) messages in each iteration.

The worst case costs of this then are
M[Filter] = O(n2logN

n)
T[Filter] = O(nlogN

n).

13

Distiributed Selection - General algorithms with guaranteed reasonable costs

Reducing the worst case: ReduceSelect
Combining all the previous techniques and adding a few new onesallows us to reduce the costs
further.

Reduction Tools
Reduction tool 1: Local Contraction. If a site has more than∆ items it can immediately reduce
its item set to size∆. Thus N is only n∆ after this tool has been used once. This requires that
each site know N and K.
Reduction tool 2: Sites Reduction. If the number of sites n is greater than K (or N - K + 1),
then n - N sites (or n - N + K - 1) and all data therein can be removed.

1. Consider the set Dmin = Dx[1] (or Dmax).
2. Find the Kth smallest (or (N - K + 1)th largest) element w. For example using Rank.
3. If Dx[1] > w (or respectively < w) then the entire set Dx can be removed.

This reduces the number of sites to at most∆. (What about Dmin = {1, 1 ,1 ,2 ,3, 3} when looking
for the 3rd smallest?)

Combined use
Using the two tools together reduces the selection from N elements among n sites to selection
from Min{n,∆} sites each with at most∆ elements. Thus the search space is at most∆2 elements.
It is also possible to successfully use them again. Call this protocol REDUCE.

14

Distiributed Selection - General algorithms with guaranteed reasonable costs

Example

N: search space K:rank of f* in search space x1 x 2 x3 x4 x5

10,032 4096 10,000 20 5 5 2
4126 4096 4096 20 5 5 2
65 33 33 20 5 5 2

In the first round we only reduce the number of elements in site x1. In the second round we find
that “looking for the largest“ has a smaller value than the smallest (4126 - 4096 + 1 = 33). That
allows us to again reduce the number of elements in site x1. Finally our search space has only
65 elements left.

Lemma 5.2.5
After the execution of REDUCE, the number of elements left is atmost∆ min{n, ∆}.

Costs
Each execution of local contraction requires a broadcast and a convergecast 2(n - 1) messages
and 2r(s) time. Interestingly it will be executed a constant threetimes. (Exercise 5.6.19).

15

Distiributed Selection - General algorithms with guaranteed reasonable costs

Cutting tools
For simplicity and with out loss of generality let K =∆ (the case where N - K + 1 =∆ is analogous.

Visualize the data as an n by∆ (n ≤ ∆) matrix. With data from site Xi in row i. Thus we
have ordered rows and unordered columns. Now let us consider the set C(2) that is all second-
smallest elements in each site. Find the kth =⌈ K/2 ⌉ smallest element m(2) of this set. It has k
- 1 elements smaller than itself in C(2). All these elements including m(2) also have a total of k
elements smaller than themselves in C(1). Thus it has a total ofk + (k - 1) = 2k - 1≥ K - 1. Thus
any element larger than m(2) cannot be the Kth smallest element in the whole set. Thus we can
remove them all from consideration.

Now consider the set C(2i) where 2i ≤ K. The kth smallest element where k =⌈ K/2i ⌉. By
definition it has exactly k - 1 elements smaller than itself inC(2i). And 2i - 1 elements smaller
in its row. Thus it has at least (k - 1) + k(2i - 1)≥ K

2i2i−1 = K - 1 elements smaller than itself in
the global set. Thus similarly as before any element larger thanm(2i) cannot be the Kth smallest
and can be removed.

16

Distiributed Selection - General algorithms with guaranteed reasonable costs

Lemma 5.2.6
After the execution of Cutting Tool on all columns {C(2i) | 2i ≤ K}. The number of elements
left is at most: min{n,∆}log∆.

Costs
Each of the log∆ steps requires a selection from a set of size at most min{n,∆}. This can be done
for example with Rank. Thus the overall worst case is
M[CUT] = O(n2log∆)
T[CUT] = O(nlog∆)

17

Distiributed Selection - General algorithms with guaranteed reasonable costs

Putting it all together
Protocol REDUCE composed of reduction tools 1 and 2, reduces thesearch space from N to at
most∆2. Protocol CUT consisting of cutting tools further reduces it to at most min{n,∆}.

Starting from these we build a full selection protocol by continuing from min{n,∆} to O(n)
(e.g. using protocol Filter) and then a protocol for small sets (e.g. Rank) to finally determine the
sought element.

Thus the protocol ReduceSelect consists of executing REDUCEwhich requires 3 iterations of
LocalContractions each using 2(n - 1) messages and 2r(s) time andone execution of SitesReduc-
tion that consists in execution of Rank. Protocol CUT is used with N ≤ min{n,∆} ∆ and requires
at most log∆ iterations of the CuttingTools, each consisting in an executing of Rank. Protocol
Filter is used with N≤ min{n,∆}log∆ and thus requires at most loglog∆ iterations, each costing
2(n - 1) messages and 2r(s) time plus an execution of Rank. For a total cost:

M[ReduceSelect] = (log∆ + 4.5loglog∆ + 2)M[Rank] + (6 + 4.5loglog∆)(n - 1)
T[ReduceSelect] = (log∆ + 4.5loglog∆ + 2)T[Rank] + (6 + 4.5loglog∆)2r(s)

18

Distiributed Selection - Summary

Summary
For small data sets N = O(n) we have O(n2) protocols.

In the special case of n=2 we can efficiently choose arbitrary Kth smallest element with cost
O(logK) regardles of N.

For the general case we have several ways to reduce the search space and arrive at a some-
what efficient solution on average.

As a special general case we also have a very complex protocol that guarantees a better worst
case than the general ones but is slower on average.

19

