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Distiributed Selection - Basics

Data
Data set» = [ JDy
X
Distribution of set to sites [ {Dx1, Dy, --.,Dxn}

Basic operations

1. queries
2. updates
2.1 insertion

2.2 deletion
2.3 change (but this can be seen as a deletion and an insertion).

Distribution of data set to sites x

Partitioning where two sites have no common elememsn D; = 0,i # j. This is very good

for updates but slow for queries.
Multiple-copy where every site has a copy of the entire data&t. = ». This is very good for

gueries but bad for updates.
Generally we haveartially replicated data with problems from both extreme cases but no ad-

vantages from either.



Distiributed Selection - Basics

Restrictions

IR (Connectivity, Total Reliability, Bidirectional Links, Disic Identifiers)

For simplicity we assume the data to be sorted locally at eatitye

We also assume that in case of ties with data elements beimylltiple sites we use ID:s to
brake ties and achieve a totally ordered set. We also assumermrspéree for communication

and a single coordinating site

For efficiency the coordinata should be the center of the graph and the tree a shortest path
spanning tree fos.

Selection

The distributed selection problem is the general problem oftilogap [K], the Kth smallest
element. Problems of this type are caltder statistics.

Median

If size of setp» N is odd. There is only one mediam [[N/2]]. If N is even we have &over
median © [N /2] and anupper median. ©[N/2+1].



Distiributed Selection - Basics

Property 5.2.1

D K] = 3[N — K +1]. Kth smallest is théN - K + 1)th largest element. This fact has important
consequences.

Property 5.2.2

If a site has more thald elements then only the K smallest elements need be consideirad
larly for (N - K + 1) elements only the (N - K + 1) largest elementsahbe considered.



Distiributed Selection - Small sets

Selection in a small sé& = O(n)

I nput collection Collecting all the data te and letting it solve locally is feasible but an overkill.
M[Collect] = O(n?) in the worst case. (e.g. Ring)

Truncated ranking Making the messages depend on the value of K we can reduce dte co
E.g. by using the existing tree ranking protocol (exercise 2.9.4 *

M[Rank] = nA.

A=Min{K, N - K+ 1}. If Aissmall Rank is much more efficient but as it grows to N/2 the two
protocols have the same cost.

Important

The two are generic protocols but it is possible to take advantthe network topology. This
is the case for Ring, Mesh and Complete Binary Tree.



Distiributed Selection - Two sites special case

Selection among two sites

When N » n we need a more efficient protocol. Here n = 2.

Median finding

A lower median has exactlyN /2] - 1 elements smaller than itself ap /2| larger than itself.
Thus comparing the local mediang emd my we can eliminate halt of all the elements.

Assume that |} = |Dy] = N/2, N = 2 and that mis larger. Then in Rall the elements larger
than my cannot be the median because they have N/4,iaral another N/4 in Dfor a total of
N/2 elements smaller than themselves. Thus they can all bevesin

The same applies for the elements ig $naller or equal than yn They have N/4 + 1 ele-
ments in Q and N/4 elements in {Xor a total of N/2 + 1 elements larger than themselves. So
they cannot be medians and can be removed.

Consequence: The overall median is the median of the elenats

Thus we simply reapply the process until only two elements dtealed the global median
can be determined.



Distiributed Selection - Two sites special case

Cost of protocol: Halving

Each iteration halves the data set thus having log N iteratiOméy on message per iteration is
required.

This can be generalised for arbitrarily sized sets without clmangs complexity (Exercise
5.6.5).



Distiributed Selection - Two sites special case

FindingKth smallest element
Assume again thgD,| = |Dy|.

Case K <[N/2]

There are more than K elements. Thus all elements larger tij&} €an be discarded leav-
Ing us with two sets of size K where finding the Kth smallest idifuig the median.

Case K>[N/2]

We can now look for the (N - K + 1)th ( €N /2] ) largest element thus similarly to the above
case we have an upper median finding problem.

Summary

K-selection can be transformed into median finding.



Distiributed Selection - General algorithms

General selection: RankSelect

With 10 to 100 sites and local datal(® we need something else. Choose an iteoutiof » and
count its rank d*. If d* < K then the item and all items smallerrithiacan not be the Kth item we
want. Similarly for d* > K. This allows us to reduce the size of §sarch space at each iteration.

Counting the rank is a trivial broadcast in a SP and a convercasllact the information.

Choosing duniformly at random

It is possible (section 2.6.7 end exercise 2.9.52) to chooderunly at random an item from the

setp in atree in the initial set. Also after items have been removeer(ese 2.9.52 and exercise
5.6.10) with the same costs.

Also by choosing from a set of locally uniformly chosen and wesghtalues at coordinator.



Distiributed Selection - General algorithms

Costs of RandomSelect

Because in the worst case we only remoyvidN iterations.
M[RandomSelectK (4(n - 1) + r(s))N
T[RandomSelectK 5r(s)N

However on average (Lemma 5.2.1) due to randomness:

Taveragel RandomSelect] = O(NlogN)
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Distiributed Selection - General algorithms

Random choice with reduction

Because Kth smallest = (N - K + 1)th largest each site can redacgedrch space thy =
Min{K i,N; — K; + 1} before the random selection occurs.

M[RandomFlipSelect] =< (2(n - 1) + r(s))N
T[RandomFlipSelect] = 3r(s)N

However on average (Lemma 5.2.2) due to randomness:

M averagel RandomFlipSelect] = O(n(Id) + In(N)))
TaveragelRandomFlipSelect] = O(n(l&) + In(N)))
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Distiributed Selection - General algorithm with a twist

Selection in a Random Distribution - taking advantage ofriigtion

knowledge

If all distributions are equally likely then we can get a represtve of the entire set by choosing
from the largest site Pat iteration i the [th smallest element where

hi = [Ki(R5) — 31

This will be used until there are less than n items under coraida and finish with Random-

FlipSelect.
Due to randomness (Lemma 5.2.3)

M average[RaNdomRandomSelect] = O(n(logldy(+ log(N)))
TaveragelRandomRandomSelect] = O(n(logldg(+ log(N)))
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Distiributed Selection - General algorithms with guaradteeasonable costs

Filtering

For systems where a guaranteed reasonable cost even in the as@s$ cequired. This can be
achieved e.g. with strategy RandomSelect with the appropiatee of d.

Let D! denote the elements of site x in iteration i arjg=|D!| denote its size. Consider the
(lower) median = D![[ n\/2 1] of D! and let M = {d!} be the set of these medians. Associate
a weight, the size of set x, to each median and chogaseoe the weighted (lower) median of M

Lemma 5.2.4 (and exercise 5.6.18): Iterations until n elementietiie at most 2.41 log(N/n).
At each iteration determining the median of setddn be done using protocol Rank because we
only have n elements. In the worst case it requiresOfressages in each iteration.

The worst case costs of this then are

M[Filter] = O(n?logh)
T[Filter] = O(nlogY).
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Distiributed Selection - General algorithms with guaradteeasonable costs

Reducing the worst case: ReduceSelect

Combining all the previous techniques and adding a few new alt®ss us to reduce the costs
further.

Reduction Tools

Reduction tool 1. Local Contraction. If a site has more thafiitems it can immediately reduce
its item set to sizé\. Thus N is only & after this tool has been used once. This requires that

each site know N and K.
Reduction tool 2: Sites Reduction. If the number of sites n is greater than K (or N - K + 1),

then n - N sites (or n- N + K - 1) and all data therein can be removed.

1. Consider the setkh = Dy[1] (0r Day).
2. Find the Kth smallest (or (N - K + 1)th largest) element w. Faraple using Rank.

3. If D4[1] > w (or respectively < w) then the entire sef £an be removed.
This reduces the number of sites to at msfWhat about [y, = {1, 1,1,2,3, 3} when looking
for the 3rd smallest?)

Combined use

Using the two tools together reduces the selection from N el&sr@anong n sites to selection
from Min{n,A} sites each with at mogi elements. Thus the search space is at ydbstements.
It is also possible to successfully use them again. Call thipod REDUCE.
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Distiributed Selection - General algorithms with guaradteeasonable costs

Example
N: search space K:rank of f*in searchspace ; XX, X3 Xs Xs
10,032 4096 10,000 20 5 5 2
4126 4096 4096 20 5 5 2
65 33 33 20 5 5 2

In the first round we only reduce the number of elements in sitéhxthe second round we find
that “looking for the largest® has a smaller value than thellesa(4126 - 4096 + 1 = 33). That
allows us to again reduce the number of elements in sitd-imally our search space has only

65 elements left.

Lemma 5.2.5
After the execution of REDUCE, the number of elements left mastA min{n, A}.

Costs

Each execution of local contraction requires a broadcast andweecast 2(n - 1) messages
and 2r(s) time. Interestingly it will be executed a constant thirees. (Exercise 5.6.19).
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Distiributed Selection - General algorithms with guaradteeasonable costs

Cutting tools

For simplicity and with out loss of generality let K&(the case where N - K + 1 Ais analogous.

Visualize the data as an n &y (n < A) matrix. With data from site Xin row i. Thus we
have ordered rows and unordered columns. Now let us considertti€2Xehat is all second-
smallest elements in each site. Find the kthid/2 | smallest element m(2) of this set. It has k
- 1 elements smaller than itself in C(2). All these elementhiitiing m(2) also have a total of k
elements smaller than themselves in C(1). Thus it has a tokat @k - 1) = 2k - 1> K - 1. Thus
any element larger than m(2) cannot be the Kth smallest elemdéme whole set. Thus we can
remove them all from consideration.

Now consider the set C(Pwhere 2 < K. The kth smallest element where k[=/2' ]. By
definition it has exactly k - 1 elements smaller than itsel€{{2). And 2 - 1 elements smaller
in its row. Thus it has at least (k - 1) + K(21) > 52' —1 = K - 1 elements smaller than itself in
the global set. Thus similarly as before any element largerni@) cannot be the Kth smallest
and can be removed.

16



Distiributed Selection - General algorithms with guaradteeasonable costs

Lemma 5.2.6
After the execution of Cutting Tool on all columns {C)2 2 < K}. The number of elements
left is at most: min{nA}ogA.

Costs
Each of the lod steps requires a selection from a set of size at most m{,his can be done
for example with Rank. Thus the overall worst case is
M[CUT] = O(n°logA)
T[CUT] = O(nlogd)
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Distiributed Selection - General algorithms with guaradteeasonable costs

Putting it all together

Protocol REDUCE composed of reduction tools 1 and 2, reducesettreh space from N to at
mostA?. Protocol CUT consisting of cutting tools further reduces itttsast min{nA}.

Starting from these we build a full selection protocol by contigufrom min{nA} to O(n)
(e.g. using protocol Filter) and then a protocol for small sets ank) to finally determine the
sought element.

Thus the protocol ReduceSelect consists of executing REDWKIEh requires 3 iterations of
LocalContractions each using 2(n - 1) messages and 2r(s) timenenekecution of SitesReduc-
tion that consists in execution of Rank. Protocol CUT is usél W < min{n,A} A and requires
at most lod\ iterations of the CuttingTools, each consisting in an exagubf Rank. Protocol
Filter is used with N< min{n,A}logA and thus requires at most loglbgerations, each costing
2(n - 1) messages and 2r(s) time plus an execution of Rank. Ftalatst:

M[ReduceSelect] = (lofy + 4.5loglog\ + 2)M[Rank] + (6 + 4.5loglod)(n - 1)
T[ReduceSelect] = (lay + 4.5loglo@d\ + 2)T[Rank] + (6 + 4.5loglog)2r(s)
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Distiributed Selection - Summary

Summary
For small data sets N = O(n) we have é)(protocols.

In the special case of n=2 we can efficiently choose arbitrary Ktallest element with cost
O(logK) regardles of N.

For the general case we have several ways to reduce the searehaspharrive at a some-
what efficient solution on average.

As a special general case we also have a very complex proto¢aubeantees a better worst
case than the general ones but is slower on average.
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