
T-79.4001 Seminar on Theoretical Computer Science
Spring 2007 – Distributed Computation

Constructing a spanning tree
Toni Kylmälä
toni.kylmala@tkk.fi

1

Constructing a spanning tree

Spanning tree
To construct a spanning tree we must get every node in the graph G to choose a
subset of its neighbours to be in the acyclic graph T that spans the entire graph
G. which we then call the “spanning tree”.

Constraints
We first look at a Unique Initiator case and limit ourselves to a fully connected
network of bidirectional links where no failures occur. Denote RI.

2

Constructing a spanning tree

Shout
Shout is a simple spanning tree construction protocol in which entities “ask”
their neighbours whether they are neighbours in the spanning tree as well.

1. An entity will answer “yes” the first time it is asked.

2. Otherwise it will answer “no”. The initiator s will always reply “no”.

3. Each entity terminates independently when it has received a reply from all its
neighbours.

Summarising this kind of protocol is a flood with an acnowledgement for every infor-
mation message. This type of structure will be called Flood + Reply.

3

PROTOCOL Shout
Status: S = {INITIATOR, IDLE, ACTIVE, DONE}

SINIT = {INITIATOR, IDLE}
ST ERM = {DONE}

Restrictions: R;UI;

INITIATOR
Spontaneuosly
begin

root := true
Tree-neighbours := /0
send(Q)toN(x)
counter := 0
becomeACT IV E

end

IDLE
Receiving (Q)
begin

root := false
parent := sender
Tree−neighbours := {sender}
send(Yes)to{sender}
counter := 1
ifcounter = |N(x)|then

becomeDONE
else

send(Q)toN(x)−{Sender}
becomeACT IV E

endif
end

ACT IV E
Receiving (Q)
begin

send(No)to{sender}
end

Receiving (Yes)
begin

Tree−neighbours := Tree−neighbours
S

{sender}
counter := counter + 1
if counter=|N(x)| then

become DONE
endif

end

Receiving (No)
begin

counter := counter + 1
if counter=|N(x)| then

become DONE
endif

end

4

Constructing a spanning tree

Proof of correctness
Because of the correctness of flooding every entity will receive Q. And by con-
struction reply either “yes” or “no” to each Q. Since every entity only replies
“yes” the first time it receives Q there can be no cycles. And because every x 6=

s is connected to s through a path of “parents” where on every link a “yes” was
sent the tree spans the entire graph G.

Important
Shout ends in local termination. No entity is aware of global termination. This is
fairly common in distributed computing. However Shout can easily be modified
to allow global termination knowledge.

5

Constructing a spanning tree

Costs
The message costs of Flood + Reply, and thus of Shout, are simple to analyze.
Flood + Reply consists of executing Flooding(Q) with a reply for every Q:

M[Flood + Reply]=2M[Flooding].
T[Flood + Reply]=T[Flooding] + 1.

Thus:

M[Shout]=4m - 2n + 2
T[Shout]=r(s∗)+1 ≤ d + 1

6

Constructing a spanning tree

Theorem 2.5.2
M(SPT/RI) ≥ m.

Proof
Similarly to the broadcast problem. If fewer than m messages are sent then there
can be an entity that neither receives Q nor sends replies.

Theorem 2.5.3
T(SPT/RI) ≥ d.

These imply that Shout is both time and message optimal.

Property 2.5.1
The message complexity of spanning tree construction under RI is O(m).

Property 2.5.2
The ideal time complexity of spanning tree construction under RI is O(d).

7

Constructing a spanning tree

Hacking
Do we have to send “no” messages?
We would only send “no” to entities that send us Q after we have received Q for
the first time. By this time we have already sent those same entities Q. Thus we
send Q and “no” to exactly the same entities. “No” messages can therefore be
left out. The resulting Shout+ has message complexity:

T[Shout+]=r(s∗)+1 ≤ d + 1
M[Shout+]=2m

Note that time complexity does not change.

8

Constructing a spanning tree

Other SPT constructions with Single Initiator
SPT construction by traversal. A depth first traversal actually constructs a
spanning tree (df-tree) of G. We obtain the tree by removing back-edges. Sim-
ple changes in local bookkeeping will allow entities to correctly determine tree
neighbours. Thus costs are unchanged:

M[df-SPT]=4m - 2n + f∗ + 1.
T[df-SPT]=2n - 2.

We can now better analyze the variable f∗. It is exactly the number of leaves in
the df-tree.

SPT construction by broadcasting. With simple modifications flooding and
df-traversal can be used to construct a spanning tree if a unique initiator is
present. This is part of an interesting phenomenon: under RI.

The execution of any broadcast protocol constructs a spanning tree.

Any broadcast execution will result in all entities receiving the information.
Every entity will call the entity it first received it from a parent. Every x 6= s has
one parent while s has none.

9

Constructing a spanning tree

Theorem 2.5.4
The parent relationship x Â y defines a spanning tree rooted in the initiator s.

Relation between broadcast, traversal, spanning tree and global
protocols

As found previously in section 2.3.4 every traversal protocol performs broad-
cast. Thus under RI any traversal protocol constructs a spanning tree.

Bcast ≡ SPT(UI). (2.20)

Actually we can make a much stronger statement. Call a problem global if every
entity must participate in its solution. Clearly all three above are global. Now
every single-initiator protocol that solves a global problem P solves also Bcast;
thus from equation 2.20 under RI

The execution of any solution to any global problem P constructs a
spanning tree.

Consider the constructed tree
Using the spanning tree we can perform broadcast and traversal with optimal
O(n) messages instead of O(m) messages which could be as bad O(n2)

10

Constructing a spanning tree

Important
Trees constructed with different methods are different. In fact because of unpre-
dictable communication delays every possible spanning tree can be constructed
with shout. This has implications for time costs. Broadcast time will be d(T)
instead of d(G). But d(T) can be much greater. In a fully connected graph n-1 as
opposed to 1.

Thus we want to construct a tree that has minimal d(T), a broadcast tree. For
this we need to find the center c of the graph for the initiator node and use a
breadth-first algorithm BFT(c, G). Center is the node x with minimum radius.

rG(x) = Max{dG(x,y) : y ∈ v}.

The radius of G is the minimum radius of all nodes x.

r(G) = Min{rG(x) : x ∈ V}.

Relationship between radius and diameter of G in every graph G

r(G) ≤ d(G) ≤ 2r(G).

Unfortunately center finding and Breadth-First SPT construction are not simple
problems to solve as will be seen in later chapters.

11

Constructing a spanning tree

Theorem 2.5.5
BFT(c, G) is a broadcast tree of G.

Application: better traversal
Use Shout+ to construct a spanning tree T and perform traversal of T using
DF_Traversal.

M[SmartTraversal]=2(m + n - 1)
T[SmartTraversal]=≤ 2n + d - 1

SmartTraversal is simple as well as time and message optimal.

12

Constructing a spanning tree

Spanning tree with multiple initiators
Unfortunately a single initiator is a strong assumption as well as difficult and
expensive to guarantee. In Shout if we have more than one initiator the result
is a spanning tree forest since initiators have no parents and all other entities
have only one parent. Removing the single initiator restriction brings out the
true nature of the problem.

Theorem 2.5.6
The SPT problem is deterministically unsolvable under R.

Impossibility result
This means that there is no deterministic protocol that always correctly termi-
nates within finite time.

13

Constructing a spanning tree

Proof
Consider a simple three entity system where all three are connected. In the
beginning all are in an identical state. If a solution A exists it must work here as
well. Consider a synchronous schedule (i.e. an execution where communication
delays are unitary) and let all three start the execution of A simultaneously.
Since the states are identical they will all execute the same steps and end in
possibly new identical states. However for there to be a spanning tree one of
the tree edges must be removed. Thus the entities will have to end in distinct
states with different values. But since the states are always identical no solution
A exists.

SPT with Initial Distinct values
Despite this very negative result we can solve the problem with additional con-
straints. ID:s are an often used solution. These can be used to distinguish be-
tween initiators. A simple solution is to have many overlapping spanning trees.
This however requires much local bookkeeping. The costs depend solely on
the number k∗ of initiators. In the case of Shout+ there will be 2mk∗ messages
which could be as bad as O(n3).

14

Constructing a spanning tree

Selective construction
A better solution is to allow only one of these to complete and “kill” all the
others. This can be done by letting the minimum (or maximum) valued initiators
SPT be completed. Thus every time an entity receives Q with a lower initiator
than the one it currently has it discards all previously collected information and
joins the new tree. This reduces local bookkeeping and ensures that all entities
have a single shared spanning tree.

Important
An entity might have terminated when it must start again when it receives Q
with lower initiator. Thus we must have some way to ensure effective local
termination. This is accomplished by having the initiator become aware that the
tree is finished and all other trees have been killed and notifying all other entities
using the newly constructed spanning tree. This protocol is called MultiShout.

Theorem 2.5.7
Protocol MultiShout constructs a spanning tree rooted in the initiator with the
smallest initial value.

15

Constructing a spanning tree

Costs of MultiShout
It’s clearly better than the first one although the worst case can be as bad as
O(n3). Consider an n-node graph with a fully connected subgraph with n - k
nodes. The k nodes are initiators all with a single connection to the subgraph
whose messages arrive in the subgraph in valued order so that when the sub-
graph has completed the construction a message Q arrives from the next k with
a smaller ID. This is possible because we have unpredictable message delays.
Thus the SPT will be constructed k times. with n - k nodes in each iteration.
O((n - k)2) messages in the subgraph. Thus a total of O(k(n - k)2) messages will
be used. If k is a linear fraction of n (e.g. k=n/2), then the cost will be O(n3).

This does not imply that the selective construction is not efficient. Merely that
the solution here is not. This will be further examined in leader election.

16

PROTOCOL MultiShout
Status: S = {IDLE, ACTIVE, DONE}

SINIT = {IDLE}
ST ERM = {DONE}

Restrictions: R;ID;

IDLE
Spontaneously
begin

root := true
root_id := v(x)
Tree-neighbours := /0
send(Q,root_id)toN(x)
counter := 0
check_counter := 0
becomeACT IV E

end

Receiving(Q, id)
begin

CONST RUCT
end

17

ACTIVE
Receiving(Q,id)
begin

if root_id = id then
counter := counter + 1
if counter=|N(x)| then

done := true
CHECK

endif
else

if root_id > id then
CONSTRUCT

endif
end

Receiving(Yes, id)
begin

if root_id = id then Tree-neighbours := Tree-neighbours
S

{sender}
counter := counter + 1
if counter=|N(x)| then

done := true
CHECK

endif
endif

end

Receiving(Check, id)
begin

if root_id = id then
check_counter := check_counter + 1
if (done ∧ check_counter=|Children|) then

TERM
endif

endif
end
Receiving(Terminate)
begin

send(Terminate) to Children
become DONE

end

Procedure CONSTRUCT
begin

root := false
root_id := id
Tree-neighbours := {sender}
parent := sender
send (Yes,root_id) to {sender}
counter := 1
check_counter = 0
if counter = |N(x)| then

done := true
CHECK

else
send(Q,root_id) to N(x) - {sender}

endif
become ACTIVE

end

Procedure CHECK
begin

Children := Tree-neighbours - {parent}
if Children = /0 then

send (Check,root_id) to parent
endif

end

Procedure TERM
begin

if root then
send(Terminate) to Tree-neighbours
become DONE

else
send(Check,root_id) to parent

endif
end

18

