
T-79.3001 Logic in Computer Science: Foundations Spring 2009
Exercise 2 ([Nerode and Shore, 1997], Chapter I, Sections 2 and 3)
February 5 – February 9, 2009

Solutions to demonstration problems

Solution to Problem 4

• We denote the proposition withφ and choose the truth values forA andB
according toA .

A B ¬A ¬B ¬B →¬A ¬B → A (¬B → A) → B φ
F F T T T F T T

• Using the definition:

– According to the definitionA 6∈ A iff A 6|= A. Similarly B 6∈ A iff
A 6|= B.

– Based on the definition of negationA 6|= A iff A |= ¬A andA 6|= B iff
A |= ¬B.

– SinceA |= ¬A, it holdsA |= ¬B →¬A.

– SinceA 6|= A andA |= ¬B, we haveA 6|= ¬B → A.

– BecauseA 6|= ¬B → A, it holdsA |= (¬B → A) → B.

– SinceA |= (¬B → A) → B, we haveA |= φ.

Solution to Problem 5

a) We use⊥ and→

¬A ≡ A →⊥
A∨B = ¬A → B ≡ (A →⊥) → B
A∧B = ¬(¬A∨¬B) = ¬(A →¬B) = ¬(A → (B →⊥)) ≡
(A → (B →⊥)) →⊥
A ↔ B = (A → B)∧ (B → A) ≡
((A → B) → ((B → A) →⊥)) →⊥

b) Sheffer stroke is defined asA | B = ¬(A∧B).



¬A ≡ A | A
A∧B = ¬(A | B) ≡ (A | B) | (A | B)
A∨B = ¬(¬A∧¬B) = (¬A | ¬B) ≡ (A | A) | (B | B)
A → B = ¬A∨B = ¬(A∧¬B) = (A | ¬B) ≡ (A | (B | B))
A ↔ B = A → B∧B → A = (A | (B | B))∧ (B | (A | A)) ≡
((A | (B | B)) | (B | (A | A))) | ((A | (B | B)) | (B | (A | A)))

Solution to Problem 6
All possibilities are listed in the following table.

p0 t t f f
p1 t f t f
p0∨¬p0 t t t t
p0∨ p1 t t t f
p1 → p0 t t f t
p0 t t f f
p0 → p1 t f t t
p1 t f t f
p0 ↔ p1 t f f t
p0∧ p1 t f f f

p0 t t f f
p1 t f t f
p0|p1 f t t t
¬(p0 ↔ p1) f t t f
¬p1 f t f t
¬(p0 → p1) f t f f
¬p0 f f t t
¬(p1 → p0) f f t f
p0 ↓ p1 f f f t
p0∧¬p0 f f f f

Solution to Problem 7
Definition of Sheffer stroke:A | B ≡ ¬(A∧B).
Definition of Peirce arrow:A ↓ B ≡¬(A∨B).

¬α ≡ α ↓ α.

(α∧β) ≡ ¬(¬α∨¬β) ≡ (¬α ↓ ¬β) ≡ (α ↓ α) ↓ (β ↓ β).

A | B ≡ ¬(α∧β) ≡ ((α ↓ α) ↓ (β ↓ β)) ↓ ((α ↓ α) ↓ (β ↓ β)).

Solution to Problem 8

a) We will use atomic propositionsP1, K1 andV1 to denote respectively that
the lamp post 1 has red, yellow and green light on (the letterscome from the
initial letters of the colors in Finnish). LetP2,K2 andV2 be the correspond-
ing propositions for lamp post 2. Now we’ll go through each requirement
and present the set of propositions that correspond to the requirement.

(i) For lamp post 1 we need propositionP1∨K1∨V1 (at least one lamp is
alight) and propositionsP1→¬K1∧¬V1, K1→¬P1∧¬V1, V1→



¬P1∧¬K1 (at most one lamp is alight). Also, corresponding propo-
sitions are needed for lamp post 2.

(ii) The needed proposition is¬(V1∧V2).

(iii) We need propositionsP1→ (K2∨V2) andP2→ (K1∨V1).

b) Let’s construct a truth table for the above set of propositions. We’ll use a
shorthand notationαi for propositions(Pi∨Ki∨Vi)∧ (Pi →¬Ki∧¬Vi)∧
(Ki → ¬Pi∧¬Vi)∧ (Vi → ¬Pi∧¬Ki) (which means that the lamp posti
has exactly one light on). The rows marked with stars are models of the set
of propositions.

P1 K1V1P2 K2V2 α1 α2 ¬(V1∧V2) P1→ (K2∨V2) P2→ (K1∨V1)

F F F F F F F F T T T
F F F F F T F T T T T
F F F F T F F T T T T
F F F F T T F F T T T
F F F T F F F T T T F
F F F T F T F F T T F
F F F T T F F F T T F
F F F T T T F F T T F
F F T F F F T F T T T
F F T F F T T T F T T
F F T F T F T T T T T ∗
F F T F T T T F F T T
F F T T F F T T T T T ∗
F F T T F T T F F T T
F F T T T F T F T T T
F F T T T T T F F T T
F T F F F F T F T T T
F T F F F T T T T T T ∗
F T F F T F T T T T T ∗
F T F F T T T F T T T
F T F T F F T T T T T ∗
F T F T F T T F T T T
F T F T T F T F T T T
F T F T T T T F T T T



P1 K1V1P2 K2V2 α1 α2 ¬(V1∧V2) P1→ (K2∨V2) P2→ (K1∨V1)

F T T F F F F F T T T
F T T F F T F T F T T
F T T F T F F T T T T
F T T F T T F F F T T
F T T T F F F T T T T
F T T T F T F F F T T
F T T T T F F F T T T
F T T T T T F F F T T
T F F F F F T F T F T
T F F F F T T T T T T ∗
T F F F T F T T T T T ∗
T F F F T T T F T T T
T F F T F F T T T F F
T F F T F T T F T T F
T F F T T F T F T T F
T F F T T T T F T T F
T F T F F F F F T F T
T F T F F T F T F T T
T F T F T F F T T T T
T F T F T T F F F T T
T F T T F F F T T F T
T F T T F T F F F T T
T F T T T F F F T T T
T F T T T T F F F T T
T T F F F F F F T F T
T T F F F T F T T T T
T T F F T F F T T T T
T T F F T T F F T T T
T T F T F F F T T F T
T T F T F T F F T T T
T T F T T F F F T T T
T T F T T T F F T T T
T T T F F F F F T F T
T T T F F T F T F T T
T T T F T F F T T T T
T T T F T T F F F T T
T T T T F F F T T F T
T T T T F T F F F T T
T T T T T F F F T T T
T T T T T T F F F T T



There are seven models (out of 26 = 64 valuations). The claim “both red
lights are not on at the same time” can be formalized as¬(P1∧P2). Exam-
ining the models we can see that the proposition¬(P1∧P2) is true in each
of them (check it), so it is a logical consequence of the set ofpropositions.

c) The claim “the yellow light is alight on both traffic lights” translates into
propositionK1∧K2. LetA1 be a truth assignment that mapsK1 andK2 to
true and all other atomic propositions to false, that is,A1 = {K1,K2}. Now,
A1 |= (K1∧K2), sinceA1 |= K1 ja A1 |= K2). In additionA1 |= α holds
for all propositionsα in item (a) (check!). ThusA1 is a model of the set
of propositions, whereK1∧K2 is true. LetA2 be a truth assignment that
maps propositionsV1 andV2 to true and all other atomic propositions to
false, that is,A2 = {V1,V2}. Now A2 6|= ¬(V1∧V2), and thus the set of
propositions is not satisfied inA2.

d) The requirements are not sufficient, because in real life red and yellow lights
may be on at the same time. It is possible to lighten the conditions of (i) to
allow this (think how this may be done by yourself). A worse problem is
that the propositions don’t specify the working order of thelights (e.g. that
the yellow light should follow the green one). It is quite difficult to model
this kind of behaviour with propositional logic.

Solution to Problem 9

a) Components of(A → B)→ ((B →C)→ (A →C)) are:A,B,C,A → B,A →
C,B → C, (B →C) → (A →C) and itself (we denote it byφ). Proposition
φ is valid iff φ is true in all possible truth assignments.

A B C A → B A →C B →C (B →C) → (A →C) φ
T T T T T T T T
T T F T F F T T
T F T F T T T T
T F F F F T F T
F T T T T T T T
F T F T T F T T
F F T T T T T T
F F F T T T T T

The last column only containsT and thusφ is valid.

b) The proposition is unsatisfiable iff all the values in the column of the truth table
corresponding to it areF.



c)
A B A ↔ B ¬A ↔¬B

T T T T
T F F F
F T F F
F F T T

Since the columns forA ↔ B and¬A ↔¬B are identical, the propositions
are logically equivalent.

d)

A B C (A∧B)∨ (C∧A) (A∧B)∨¬B A∨ (C∧¬B)

T T T T T T⋆

T T F T T T⋆

T F T T T T⋆

T F F F T T
F T T F F F
F T F F F F
F F T F T T
F F F F T F

The claim holds, becauseA∨ (C∧¬B) has the valueT in all the lines in
which (A∧B)∨ (C∧A) and(A∧B)∨¬B get the valueT (marked with⋆).

Solution to Problem 10

Proof by induction.
Basic case:Let φ be an atomic proposition, that is,At(φ) = {φ}. By the definition
of intersection eitherφ ∈ A1 andφ ∈ A2, which impliesA1 |= φ andA2 |= φ, or
φ 6∈ A1 andφ 6∈ A2, which impliesA1 6|= φ andA2 6|= φ. ThusA1 |= φ ⇐⇒ A2 |= φ.
Induction hypothesis: The claim holds for allφ that have at mostn connectives.
Induction step: Let φ a proposition that hasn + 1 connectives. Let’s do a case
analysis for different connectives.

1. Letφ be of the form¬α. Now, by induction hypothesis, the claim holds for
propositionα. If A1 |= α andA2 |= α, thenA1 6|= ¬α andA2 6|= ¬α. On the
other hand, ifA1 6|= α andA2 6|= α, thenA1 |= ¬α andA2 |= ¬α. Thus the
claim holds , ifφ is of the form¬α.

2. Letφ be of the formα∧β. The claim holds for bothα andβ by the induction
hypothesis. There are four possible cases.



• If A1 |= α, A2 |= α, A1 |= β andA2 |= β, then it holdsA1 |= α∧β and
A2 |= α∧β.

• If A1 |= α, A2 |= α, A1 6|= β andA2 6|= β, then it holdsA1 6|= α∧β and
A2 6|= α∧β.

• If A1 6|= α, A2 6|= α, A1 |= β andA2 |= β, then it holdsA1 6|= α∧β and
A2 6|= α∧β.

• If A1 6|= α, A2 6|= α, A1 6|= β andA2 6|= β, then it holdsA1 6|= α∧β and
A2 6|= α∧β.

Thus, the claim holds ifφ is of the formα∧β.

3. Go similarly through the other connectives based on theirdefinitions.


