T-79.3001 Logic in Computer Science: Foundations Spring 2009 Exercise 11 ([Nerode and Shore, 1997], Predicate Logic, Chapters 10 – 14) May 5 – May 5, 2009

Solutions to demonstration problems

- **4.** Define the Herbrand universe and Herbrand base for the following sets of clauses.
 - a) $\{\{\neg G(x,c)\}\},\$
 - b) $\{\{P(f(y),y)\}\},\$
 - c) $\{\{P(x)\}, \{\neg P(a), \neg P(b)\}\},\$
 - d) $\{\{\neg P(x,y), \neg P(y,z), G(x,z)\}\},\$
 - e) $\{\{\neg P(x,y)\}, \{Q(a,x), Q(b,f(y))\}\},$ ja
 - f) $\{\{P(x), Q(f(x,y))\}\}$

Solution to Problem 4

- a) $U = \{c\}, B = \{G(c,c)\}.$
- b) $U = \{a, f(a), f(f(a)), ...\}, B = \{P(e_1, e_2) | e_1 \in U, e_2 \in U\}.$
- c) $U = \{a, b\}, B = \{P(a), P(b)\}.$
- d) $U = \{a\}, B = \{P(a,a), G(a,a)\}.$
- e) $U = \{a, b, f(a), f(b), f(f(a)), f(f(b)), ...\},$ $B = \{P(e_1, e_2) | e_1 \in U, e_2 \in U\} \cup \{Q(e_1, e_2) | e_1 \in U, e_2 \in U\}.$
- f) $U = \{a, f(a, a), f(a, f(a, a)), f(f(a, a), a), f(f(a, a), f(a, a)), \dots\},$ $B = \{P(e) \mid e \in U\} \cup \{Q(e) \mid e \in U\}.$
- 5. Consider

$$\Sigma = \{ \forall x P(x, a, x), \neg \exists x \exists y \exists z (P(x, y, z) \land \neg P(x, f(y), f(z))) \}.$$

- a) Transform Σ into a set of clauses S.
- b) Define the Herbrand universe H and Herbrand base B of S.
- c) Let Herbrand structures be subsets of the Herbrand base. Find the subset minimal and maximal Herbrand models of *S*.

Solution to Problem 5

a) A clause $\{P(x,a,x)\}$ is obtained from the sentence $\forall x P(x,a,x)$. and the other sentence $\neg(\exists x \exists y \exists z (P(x,y,z) \land \neg P(x,f(y),f(z)))$ results in clause

$$\{\neg P(x,y,z), P(x,f(y),f(z))\}$$
. Thus we get

$$S = \{ \{ P(x, a, x) \}, \{ \neg P(x, y, z), P(x, f(y), f(z)) \} \}.$$

- b) Herbrand-universe $H = \{a, f(a), f(f(a)), \ldots\} = \{f^n(a) \mid n \ge 0\}$ and Herbrand-base $B = \{P(e_1, e_2, e_3) \mid e_1, e_2, e_3 \in H\}$.
- c) The maximal Herbrand-model for S is B, since every term of the form $P(f^n(a), a, f^n(a))$, $n \ge 0$ belongs to B (the first clause is satisfied), and each term of the form $P(f^n(a), f^{m+1}(a), f^{k+1}(a))$, for $n, m, k \ge 0$, belongs to B (the second clause is satisfied).

The minimal Herbrand-model is $\{P(a, a, a), P(a, f(a), f(a))\}.$

6. Transform the problem of deciding the validity of sentence

$$\exists x \exists y (P(x) \leftrightarrow \neg P(y)) \to \exists x \exists y (\neg P(x) \land P(y))$$

into the problem of satisfiability of a propositional logic statement and solve the problem.

Solution to Problem 6

Find the set of clauses S which is the clausal form of the sentence (finite, contains no function symbols), find the Herbrand universe H of S and furthermore, the finite set of Herbrand-instances S'. This can be interpreted as a set of propositional clauses and for instance resolution can be used to check the validity of S'.

7. Find the composition of substitutions $\{x/y, y/b, z/f(x)\}$ and $\{x/g(a), y/x, w/c\}$.

Solution to Problem 7

$$\{y/b, z/f(g(a)), w/c\}$$

- **8.** Find the most general unifiers for the following sets of literals.
 - a) $\{P(x,g(y),f(a)),P(f(y),g(f(z)),z)\}$
 - b) $\{P(x, f(x), g(y)), P(a, f(g(a)), g(a)), P(y, f(y), g(a))\}$
 - c) $\{P(x, f(x,y)), P(y, f(y,a)), P(b, f(b,a))\}$
 - d) $\{P(f(a), y, z), P(y, f(a), b), P(x, y, f(z))\}$

Solution to Problem 8

a)
$$\sigma_0 = \varepsilon$$
 (empty substitution)
 $S_0 = \{P(x, g(y), f(a)), P(f(y), g(f(z)), z)\}$
 $D(S_0) = \{x, f(y)\}$
 $\sigma_1 = \{x/f(y)\}$
 $\sigma_0 \sigma_1 = \{x/f(y)\}$
 $S_1 = \{P(f(y), g(y), f(a)), P(f(y), g(f(z)), z)\}$
 $D(S_1) = \{y, f(z)\}$
 $\sigma_2 = \{y/f(z)\}$
 $\sigma_0 \sigma_1 \sigma_2 = \{x/f(f(z)), y/f(z)\}$
 $S_2 = \{P(f(f(z)), g(f(z)), f(a)), P(f(f(z)), g(f(z)), z)\}$
 $D(S_2) = \{f(a), z\}$
 $\sigma_3 = \{z/f(a)\}$

$$\begin{split} &\sigma_0\sigma_1\sigma_2\sigma_3 = \{x/f(f(f(a))),y/f(f(a)),z/f(a)\}\\ &S_3 = \{P(f(f(f(a))),g(f(f(a))),f(a))\}\\ &\text{MGU is }\sigma_0\sigma_1\sigma_2\sigma_3.\\ &\text{b) }\sigma_0 = \epsilon\\ &S_0 = \{P(x,f(x),g(y)),P(a,f(g(a)),g(a)),P(y,f(y),g(a))\}\\ &D(S_0) = \{x,a,y\} \end{split}$$

$$\sigma_1 = \{x/a\}$$

$$S_1 = \{P(a, f(a), g(y)), P(a, f(g(a)), g(a)), P(y, f(y), g(a))\}$$

$$P(S_1) = \{a, y\}$$

$$D(S_1) = \{a, y\}$$

$$\sigma_2 = \{y/a\}$$

$$S_2 = \{P(a, f(a), g(a)), P(a, f(g(a)), g(a))\}$$

$$D(S_2) = \{a, g(a)\}$$

Terms a and g(a) cannot be unified.

c)
$$\sigma_0 = \varepsilon$$

 $S_0 = \{P(x, f(x, y)), P(y, f(y, a)), P(b, f(b, a))\}$
 $D(S_0) = \{x, y, b\}$
 $\sigma_1 = \{x/b\}$
 $S_1 = \{P(b, f(b, y)), P(y, f(y, a)), P(b, f(b, a))\}$
 $D(S_1) = \{b, y\}$
 $\sigma_2 = \{y/b\}$
 $S_2 = \{P(b, f(b, b)), P(b, f(b, a))\}$
 $D(S_2) = \{b, a\}$

Terms b and a cannot be unified.

d)
$$\sigma_0 = \varepsilon$$

$$S_0 = \{P(f(a), y, z), P(y, f(a), b), P(x, y, f(z))\}$$

$$D(S_0) = \{f(a), y, x\}$$

$$\sigma_1 = \{y/f(a)\}$$

$$S_1 = \{P(f(a), f(a), z), P(f(a), f(a), b), P(x, f(a), f(z))\}$$

$$D(S_1) = \{f(a), x\}$$

$$\sigma_2 = \{x/f(a)\}$$

$$S_2 = \{P(f(a), f(a), z), P(f(a), f(a), b), P(f(a), f(a), f(z))\}$$

$$D(S_2) = \{z, b, f(z)\}$$

$$\sigma_3 = \{z/b\}$$

$$S_3 = \{P(f(a), f(a), b), P(f(a), f(a), f(b))\}$$

$$D(S_3) = \{b, f(b)\}$$
Terms b and $f(b)$ cannot be unified.

9. Show that

- a) the composition of substitutions is not commutative, that is, there are substitutions σ and λ such that $\sigma\lambda \neq \lambda\sigma$.
- b) a most general unifier is not unique, that is, there is a set of literals S such that it has two most general unifiers σ and λ such that $\sigma \neq \lambda$.

Solution to Problem 9

- a) Consider $\sigma = \{x/a\}$ and $\lambda = \{x/b\}$. Now, $\sigma\lambda \neq \lambda\sigma$.
- b) $S = \{P(x), P(y)\}$ has two MGUs: $\{x/y\}$ and $\{y/x\}$.
- **10.** Unify $\{P(x,y,z), P(f(w,w), f(x,x), f(y,y))\}.$

Solution to Problem 10

$$\{x/f(w,w), y/f(f(w,w), f(w,w)), z/f(f(f(w,w), f(w,w)), f(f(w,w), f(w,w)))\}.$$

11. Use resolution to prove that there are no barbers, when

- a) all barbers shave everyone who does not shave himself, and
- b) no barber shaves anyone who shaves himself.

Solution to Problem 11

Define P(x) ="x is barber" and A(x,y) ="x shaves y".

a)
$$\forall x (P(x) \rightarrow \forall y (\neg A(y, y) \rightarrow A(x, y))),$$

b)
$$\forall x (P(x) \rightarrow \forall y (A(y,y) \rightarrow \neg A(x,y))).$$

The clausal form:

a)
$$\forall x (P(x) \rightarrow \forall y (\neg A(y,y) \rightarrow A(x,y)))$$

 $\forall x (\neg P(x) \lor \forall y (A(y,y) \lor A(x,y)))$
 $\forall x \forall y (\neg P(x) \lor A(y,y) \lor A(x,y))$
 $\neg P(x) \lor A(y,y) \lor A(x,y)$
 $\{\neg P(x_1), A(y_1,y_1), A(x_1,y_1)\}$

b)
$$\forall x (P(x) \rightarrow \forall y (A(y,y) \rightarrow \neg A(x,y)))$$

 $\forall x (\neg P(x) \lor \forall y (\neg A(y,y) \lor \neg A(x,y)))$
 $\forall x \forall y (\neg P(x) \lor \neg A(y,y) \lor \neg A(x,y))$
 $\neg P(x) \lor \neg A(y,y) \lor \neg A(x,y)$
 $\{\neg P(x_2), \neg A(y_2,y_2), \neg A(x_2,y_2)\}$

We want to show $\neg \exists x P(x)$, and thus consider its negation $\exists x P(x)$. In the clausal form: $\{P(a)\}$.

From clauses

$$\{\neg P(x_1), A(y_1, y_1), A(x_1, y_1)\}\$$
 and $\{\neg P(x_2), \neg A(y_2, y_2), \neg A(x_2, y_2)\}\$

we get

$$\{\neg P(x_3)\}\$$
 (substitution $\{x_1/x_3, x_2/x_3, y_1/x_3, y_2/x_3\}$)

From clauses $\{P(a)\}$ and $\{\neg P(x_3)\}$ we obtain the empty clause (substitution $\{x_3/a\}$). Thus the set of clauses is unsatisfiable and $\neg \exists x P(x)$ is a logical consequence of the premises.

- **12.** We use groud terms $0, s(0), s(s(0)), \ldots$, to represent natural numbers $0, 1, 2, \ldots$, where 0 is a constants and s is a unary function such that s(x) = x + 1 for all natural numbers x.
 - a) Let predicates J2(x), J3(x) and J6(x) represent that a natural number x is divisible by two, three and six, respectively. Define these predicates with sentences in predicate logic using the definitions of J2 and J3 to define J6.
 - b) Use resolution to prove that if a natural number x is divisible by two and three, then natural number x + 6 is divisible by six.

Solution to Problem 12

We start with the base cases, that is, 0 is divisible by two and three:

$$J2(0),$$

 $J3(0).$

Furthermore, divisibility for larger numbers:

$$\forall x(J2(x) \rightarrow J2(s(s(x)))),$$

 $\forall x(J3(x) \rightarrow J3(s(s(s(x))))).$

Finally, divisibility by six:

$$\forall x (J2(x) \land J3(x) \rightarrow J6(x)).$$

We transform the sentences into clausal form. For the definition of predicate J2(x) we get:

$$\forall x(J2(x) \to J2(s(s(x))))$$

$$\forall x(\neg J2(x) \lor J2(s(s(x)))$$

$$\{\neg J2(x), J2(s(s(x)))\}.$$

Similarly for the definition of predicate J3(x) we obtain $\{\neg J3(x), J3(s(s(s(x))))\}$. The sentence defining predicate J6(x) results in the following:

$$\forall x(J2(x) \land J3(x) \rightarrow J6(x))$$

$$\forall x(\neg(J2(x) \land J3(x)) \lor J6(x))$$

$$\forall x(\neg J2(x) \lor \neg J3(x) \lor J6(x))$$

$$\{\neg J2(x), \neg J3(x), J6(x)\}.$$

From the negation of the query we obtain the following three clauses:

$$\neg \forall x (J2(x) \land J3(x) \rightarrow J6(s^{6}(x)))$$

$$\neg \forall x (\neg (J2(x) \land J3(x)) \lor J6(s^{6}(x)))$$

$$\neg \forall x (\neg J2(x) \lor \neg J3(x)) \lor J6(s^{6}(x)))$$

$$\exists x \neg (\neg J2(x) \lor \neg J3(x) \lor J6(s^{6}(x)))$$

$$\exists x (J2(x) \land J3(x) \land \neg J6(s^{6}(x)))$$

$$\{J2(c)\}, \{J3(c)\} \text{ and } \{\neg J6(s^{6}(c))\}.$$

The resolution refutation:

1.
$$\{J2(c)\}, P$$

2.
$$\{\neg J2(x_1), J2(s(s(x_1)))\}, P$$

3.
$$\{J2(s(s(c)))\}, 1 \& 2, x_1/c$$

4.
$$\{\neg J2(x_2), J2(s(s(x_2)))\}, P$$

5.
$$\{J2(s^4(c))\}, 3 \& 4, x_2/s(s(c))$$

6.
$$\{\neg J2(x_3), J2(s(s(x_3)))\}, P$$

7.
$$\{J2(s^6(c))\}$$
, 5 & 6, $x_3/s^6(c)$

8.
$$\{J3(c)\}, P$$

9.
$$\{\neg J3(x_4), J3(s(s(s(x_4))))\}, P$$

10.
$$\{J3(s(s(s(c))))\}, 8 \& 9, x_4/c$$

11.
$$\{\neg J3(x_5), J3(s(s(s(x_5))))\}, P$$

12.
$$\{J3(s^6(c))\}$$
, 10 & 11, $x_4/s(s(s(c)))$

13.
$$\{\neg J2(x_6), \neg J3(x_6), J6(x_6)\}, P$$

14.
$$\{\neg J3(s^6(c)), J6(s^6(c))\}, 7 \& 13, x_6/s^6(c)$$

15.
$$\{J6(s^6(c))\}$$
, 12 & 14

16.
$$\{\neg J6(s^6(c))\}, P$$