T-79.3001 Logic in Computer Science: Foundations Spring 2009 Exercise 4 ([Nerode and Shore, 1997], Chapter I, Sections 4 and 7) February 19 – February 23, 2009

Tutorial problems

- **1.** Use semantic tableaux to check whether the following claims hold. If not, give a counter-example.
 - a) $\{A \rightarrow B, B \rightarrow C, C \rightarrow A\} \models (A \leftrightarrow C)$.
 - b) $\not\models ((A \rightarrow B) \rightarrow C) \leftrightarrow (A \rightarrow (B \rightarrow C))$.
 - c) $A \land B \land (B \rightarrow C) \land (\neg A \lor \neg B \lor \neg C)$ is unsatisfiable.
- **2.** Use semantic tableaux to prove the axioms of the Hilbert system. Use propositional variables α , β and γ instead of atomic propositions.
- **3.** Use the Suppes system to prove the axioms of the Hilbert system. Use propositional variables instead of atomic propositions.

Demonstration problems

4. Use the Hilbert system to prove that

$$\{B \rightarrow A, \neg A\} \vdash \neg B.$$

5. Peirce arrow is defined as follows:

$$A \downarrow B \Leftrightarrow_{def} \neg A \land \neg B$$
.

Define semantic tableaux rules for it.

- **6.** Use semantic tableux to show that the following propositions are valid.
 - a) $A \rightarrow (B \rightarrow B)$.
 - b) $(A \rightarrow B) \land (B \rightarrow C) \rightarrow (A \rightarrow C)$.
 - c) $(A \rightarrow B) \land (A \rightarrow C) \rightarrow (A \rightarrow B \land C)$.
 - d) $(A \rightarrow C) \land (B \rightarrow C) \land (A \lor B) \rightarrow C$.
- **7.** Use semantic tableaux to check whether the following claims hold. If not, give a counter-example.

a)
$$\{B \rightarrow A, C \rightarrow B, (C \rightarrow A) \rightarrow D\} \models D.$$

b)
$${A \rightarrow C, A \lor B, \neg D \rightarrow \neg B} \models C \rightarrow D.$$

c)
$$\models (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow C) \rightarrow (A \rightarrow B)).$$

d)
$$\models (\neg B \rightarrow (A \rightarrow C)) \rightarrow (A \rightarrow (B \lor C)).$$

- **8.** Recall the specification for two traffic light posts positioned in the intersection of two one-way streets discussed earlier in tutorials. Use semantic tableaux to prove that "the red lights cannot be on simultaneously" is a logical consequence of the set of propositions describing the behavior of the system.
- **9.** Use Hilbert's proof system to prove the following.

a)
$$\vdash P \rightarrow P$$
.

b)
$${P \rightarrow Q, Q \rightarrow R} \vdash P \rightarrow R$$
.

c)
$$\{P, Q \rightarrow (P \rightarrow R)\} \vdash Q \rightarrow R$$
.