Spring 2009

Tutorial problems

- 1. Let $\phi, \psi, \chi \in \mathcal{L}$ be propositional formulas. Show that
 - a) $\phi \equiv \phi$ (reflexivity).
 - b) If $\phi \equiv \psi$, then $\psi \equiv \phi$ (symmetry).
 - c) If $\phi \equiv \psi$ and $\psi \equiv \chi$, then $\phi \equiv \chi$ (transitivity).
- **2.** a) Show that if $\Sigma \models \neg \alpha$, then $\Sigma \cup \{\alpha\}$ on unsatisfiable.
 - b) Show in detail that if $\Sigma \cup \{\alpha\} \models \beta$, then $\Sigma \models \alpha \rightarrow \beta$.
- **3.** Use semantic tableaux to prove the following:
 - a) $\models C \land (\neg A \leftrightarrow B) \rightarrow ((\neg A \lor \neg B) \land (B \lor A) \rightarrow C)$
 - b) $\{A \rightarrow B, \neg(\neg C \land B)\} \models A \rightarrow C$

Demonstration problems

- **4.** Prove the following claims.
 - a) If $\Sigma \models \phi$ and $\Sigma \models \neg \phi$ for some ϕ , then the set of propositions Σ is unsatisfiable.
 - b) If set of propositions Σ has exactly one model, then for all propositions ϕ either $\Sigma \models \phi$ or $\Sigma \models \neg \phi$ (but not both).
- **5.** Proof the following properties of logical consequences.
 - a) $\Sigma \subseteq Cn(\Sigma)$.
 - b) Monotonicity: $\Sigma_1 \subseteq \Sigma_2 \Rightarrow \operatorname{Cn}(\Sigma_1) \subseteq \operatorname{Cn}(\Sigma_2)$.
 - c) $\Sigma \models \phi \Rightarrow Cn(\Sigma) = Cn(\Sigma \cup \{\phi\}).$
 - d) $Cn(Cn(\Sigma)) = Cn(\Sigma)$.
- **6.** Use propositional logic to formalize a voting system for three voters, for which the models give the positive or negative voting result. How does the system change if there are four voters, and the vote of the chair decides in case of a tie?

- 7. The reader of the Helsinki area travel card has three lights which are lit according to the following principles (see http://www.ytv.fi/ENG/transport/guide/travel_card/ for more information).
 - 1. Green light: a valid period ticket / value ticket / transfer ticket.
 - 2. Green and yellow light: less than or equal to 3 full days' valid period / less than or equal to 5 euros' value on the travel card.
 - 3. Red light: period / transfer not valid or other error.

Formalize the system using propositional logic and find out what kind of models the set of propositions has.