T-79.3001 Logic in Computer Science: Foundations Spring 2009 Exercise 2 ([Nerode and Shore, 1997], Chapter I, Sections 2 and 3) February 5 – February 9, 2009

Tutorial problems

- **1.** Give definitions for other propositional connectives using conjunction (\land) and negation (\neg) .
- 2. a) Let $\mathcal{A} = \{A, C\}$ be a truth assignment. Find the truth value of

$$C \wedge (\neg A \leftrightarrow B) \rightarrow ((\neg A \vee \neg B) \wedge (B \vee A) \rightarrow C)$$

using (i) truth tables and (ii) the truth definition of propositional logic. What can be said about the validity, satisfiability, and unsatisfiability of the proposition?

- b) Apply truth tables to see whether $\{A \to B, \neg(\neg C \land B)\} \models A \to C$ holds.
- **3.** Show that if the set Σ of sentences has a unique model \mathcal{A} , then for every proposition ϕ , either $\Sigma \models \phi$ or $\Sigma \models \neg \phi$ (but not both), and

$$Cn(\Sigma) = \{ \phi \in \mathcal{L} \mid \mathcal{A} \models \phi \}.$$

Demonstration problems

4. Let $\mathcal{A} = \emptyset$ be a truth assignment. Find the truth value of the sentence

$$(\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$$

using a truth table and the truth definition of propositional logic.

- 5. Give definitions for propositional connectives using
 - a) the proposition that is always false (\bot) and implication (\to) , and
 - b) the Sheffer stroke.
- **6.** List all possible binary connectives (16 in total) and give their definitions using the basic connectives of propositional logic.
- 7. Define the Sheffer's stroke using the Peirce's arrow.
- **8.** An engineer designed a specification for two traffic light posts positioned in the intersection of two one-way streets:

- (i) Both the light posts have a green, a yellow and a red light. Exactly one of the lights in each light post is lit at all times.
- (ii) Both green lights are not lit at the same time.
- (iii) If one lamp post has the red light on, then the other has either the green or the yellow light on.
 - a) Formalize the above requirements as a set of propositional statements.
 - b) Construct a truth table for the set of statements.
 - c) Give (i) a model for the set of statements, and (ii) a truth assignment such that the set of statements is not satisfied.
 - d) Are the requirements complete enough for a real life situation?
- **9.** Apply truth tables to see whether the following claims hold.
 - a) $(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$ is valid.
 - b) $\neg((A \rightarrow B) \rightarrow ((\neg A \rightarrow B) \rightarrow B))$ is unsatisfiable.
 - c) $A \leftrightarrow B$ and $\neg (A \leftrightarrow \neg B)$ are logically equivalent.
 - d) $\{(A \land B) \lor (C \land A), (A \land B) \lor \neg B\} \models A \lor (C \land \neg B).$
- **10.** A sentence ϕ is called *positive*, if it has been formed using only atomic propositions and the connectives \wedge and \vee . Let \mathcal{A}_1 and \mathcal{A}_2 be truth assignments so that $\mathcal{A}_1 \subseteq \mathcal{A}_2$.
 - a) Show using induction on the structure of a positive sentence ϕ that if $\mathcal{A}_1 \models \phi$, then $\mathcal{A}_2 \models \phi$.
 - b) Explain why all propositional sentences do not have this property. Give a concrete counter-example.
- **11.** Let $\mathcal{A}_1 \subseteq \mathcal{P}$ and $\mathcal{A}_2 \subseteq \mathcal{P}$ be truth assignments and $\phi \in \mathcal{L}$ a proposition. Show that if $\mathcal{A}_1 \cap At(\phi) = \mathcal{A}_2 \cap At(\phi)$, then $\mathcal{A}_1 \models \phi \iff \mathcal{A}_2 \models \phi$.