T-79.3001 Logic in computer science: foundations Spring 2009 Exercise 1 ([Nerode and Shore, 1997], Chapter I, Sections 1 and 2) January 29–February 2, 2009

Tutorial problems

- **1.** a) Show by structural induction that the depth of the parse tree of a propositional formula with *n* connectives is at most *n*.
 - b) Give an example of a propositional formula with n connectives having a parse tree of depth n for arbitrary $n \ge 0$.
- **2.** Formalize the following statements in propositional logic:
 - a) Greasy fish is served with a white wine with high acidity. Otherwise the dish is served with still or sparkling mineral water.
 - b) If the customer chooses a cabriolet car, the roof rack cannot be installed.
 - c) A car has exactly 4, 5, or 6 gears.
 - d) The course has three weekly lectures each organized different day.
 - c) Out of two three-digit binary numbers $x_1x_2x_3$ is greater than $y_1y_2y_3$.
- **3.** Remove unnecessary parenthesis from the following propositional statements. What are the forms of the statements? Give parse trees for the propositions.

a)
$$(((C \rightarrow (\neg B)) \lor A) \land ((\neg A) \leftrightarrow D))$$

b)
$$((\neg (A \rightarrow (B \lor (\neg D)))) \rightarrow ((\neg B) \lor (C \lor (\neg A))))$$

c)
$$(A \leftrightarrow (D \lor ((B \rightarrow (\neg D)) \land C)))$$

Demonstration problems

- **4.** Let $\mathcal{P} = \{A, B, C\}$ be the set of atomic propositions. Which of the following are propositional statements? Why?
 - a) *A*
 - b) $\neg (A \land B)$
 - c) $(A \wedge (B \rightarrow (A \wedge C)))$
 - d) It is raining today.

- **5.** Formalize the following statements in propositional logic:
 - a) I can't finish my work unless you help me.
 - b) I either walk, ride a bicycle, or sometimes drive a car to work.
 - c) Merja and Arto are coming to visit us.
 - d) You won't get dessert because you have been naughty
 - e) Even though the manual was long I finished reading it too early.
 - f) If somebody asks me or even if no one does he shouldn't buy a car or he must live far from his workplace and gasoline should become cheaper.
- **6.** Remove unnecessary parenthesis so that the meaning of the proposition does not change.
 - a) $(A \rightarrow ((B \land C) \lor D))$
 - b) $(((A \rightarrow B) \land (B \rightarrow C)) \rightarrow (A \rightarrow C))$
 - c) $((A \land (B \lor C)) \lor (A \land (C \lor D)))$
 - d) $((\neg(A \land B)) \leftrightarrow ((B \rightarrow C) \land A))$
 - e) $(((\neg A) \land (\neg B)) \rightarrow \neg (A \lor B))$
- **7.** What are the forms of the propositional statements in the previous exercise? Give parse trees for the propositions.
- **8.** List the substatements of the following propositional statement.

$$(\neg A \to (\neg B \to C)) \to (\neg (\neg A \to B) \to C)$$

- **9.** Prove by induction that a set of n elements has 2^n subsets.
- **10.** Prove that all propositional statements have an even number of parenthesis.
- 11. The set of atomic propositions of an arbitrary proposition Φ is denoted by $At(\Phi)$. Write a recursive definition for $At(\Phi)$.