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Solutions to demonstration problems

Solution to Problem 4
All of the solutions use either universal or existential quantifiers or both. If we
want to say that some propertyφ(x) holds for all thosex that have also property
P(x), we formalize that with:∀x(P(x) → φ(x)). If some propertyφ(x) holds for
somex that also satisfiesP(x), we use∃x(P(x) ∧ φ(x)). In the solutios many
predicates (e.g.P(x) in the first case) are used to denote the type of thex.

a) ∃x(P(x)∧V (x)), when
P(x) = x is a gate.
V (x) = x is faulty.
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b) A(a)∧ (∀x(A(x)∧¬(x = a) → N(a,x)), when
a = the algorithm in question
A(x) = x is an algorithm
N(x,y) = x is faster thany.
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c) ∀x(K(x) →∃y(T (y)∧R(x,y))), when
K(x) = x is a participant of the course.
T (x) = x is a workstation
R(x,y) = x usesy.

d) ∀x(T (x) →∀y∀z(P(y)∧P(z)∧K(y,x)∧K(z,x)→ y = z)), when
P(x) = x is a process.
T (x) = x is a file.
K(x,y) = x writes iny.

The above solutions are not the only possible ones.

Solution to Problem 5

a) ∀y(∃x(P(x)∧Q(x)) → L(x)).

b) ∃x∃y(P(x,y)∨Q(y,x)) ↔∀x¬K( f (x))

c) ∀x∀y(A∧B)

Solution to Problem 6
Using the constantc and functionf we get the set of terms{c, f (c), f 2(c), f 3(c), . . .}.
More terms can be obtained using functiong, arguments ofg can be any pair from
the previous set, for exampleg(c,c) ja g( f 3(c), f 108(c)). Naturally these new
terms can again be used as arguments forf andg, and we get, e.g,f (g( f 5(c), f 13(c)))
ja g(g(c, f (c)), f 8(c)). This process can be continued for arbitrarily many steps.

Solution to Problem 7
We represent trees as lists. Let constante denote an empty list, and consider bi-
nary functionc ∈ F2 (ensimmäinen argumentti listan ensimmäinen alkio ja toinen
argumentti loput listasta), and unary functionl ∈ F1 (lehtisolmu). Functionc(x,y)
denotes a list:x is the first element in the list andy is the rest of the list. Function
l(x) denotes thatx is a leaf node.
Consider the following trees:

a •

a b

•

a d •

b f



The first of these is represented asl(a), the second asc(l(a),c(l(b),e)) and the
third asc(l(a), c(l(d),c(c(l(b),c(l( f ),e)),e))).

Solution to Problem 8
A sentence is a formula with no free occurences of any variable. We know that
∀xφ(x) is a sentence.φ(t) means a formula in which each free occurence ofx is
replaced witht. Sincet is ground, alsoφ(t) is a sentence.

Solution to Problem 9
The pairs inN2 can be placed in an array as follows:

〈0,0〉 〈0,1〉 〈0,2〉 〈0,3〉 · · ·
〈1,0〉 〈1,1〉 〈1,2〉 〈1,3〉 · · ·
〈2,0〉 〈2,1〉 〈2,2〉 〈2,3〉 · · ·

...
...

...
...

. . .

The idea is the same as when showing that there are equally many elements in
N

2 and inN, i.e., a bijective mapping fromN to pairs is defined asf (0) = 〈0,0〉
and working along diagonals for larger values, for instance, f (1) = 〈0,1〉, f (2) =
〈1,0〉 etc.
Now, we choose the interpretations as follows:cS = 〈0,0〉, and

f (c)S = 〈0,1〉 f ( f (c))S = 〈1,0〉
f 3(c)S = 〈0,2〉 f 4(c)S = 〈1,1〉

...
...

Thus f S is

f S : 〈x,y〉 → 〈x′,y′〉

x′ = g(x)(y+1)+(1−g(x))(x−1)

y′ = (1−g(x))(y+1)

whereg(x) is

g(x) =

{

1, if x = 0.
0, otherwise.

Solution to Problem 10

a) In the graphs we are particularly interested in edges, which we will denote
by predicateK(x,y) (there is a edge from nodex to nodey in the graph).
There are several possible ways to denote the colors.



(i) We can fix the set of the colors and represent them as predicates. If
there aren different colors in setC, we define predicatesC1(x), . . . ,Cn(n).
A predicateCi(x) means that the nodex is of the colorCi. The problem
description demands that each node has a unique color and that if there is a
edge between two nodes the nodes have different colors.

The first condition can be stated with a set of statements of the form:

∀x(Ci(x) ↔¬C1(x)∧· · ·∧¬Ci−1(x)∧¬Ci+1∧· · ·∧¬Cn(x))

wherei = 1, . . . ,n (notice that¬Ci(x) is not in the conjunction of the right
side).

The second condition is formalized for eachCi(x) as follows:

∀x∀y(K(x,y) → (Ci(x) →¬Ci(y))).

(ii) The second possibility is to leave the definition of the colors open and
use a predicateV (x,y) (the nodex is of the colory).

Now the uniqueness of node colors can be expressed as:

∀x∀y∀z(V (x,y)∧V (x,z) → y = z).

Informally, if a nodex has both colorsy andx, then the colorsy andz must,
in fact, be the same color.

The second condition can be expressed with:

∀x∀y∀z(K(x,y) → (V (x,z) →¬V (y,z)).

(iii) The third possibility is to define a function symbolv. Now v(x) means
the color of the nodex. Because the value of a function is by definition
unique, only the second condition has to be formalized:

∀x∀y(K(x,y) →¬(v(x) = v(y))).

b) Let’s construct a model for the case (i) whenn = 2. We will define a struc-
tureS , where the universume isU = {a1,a2} (two nodes). The interpreta-
tion of predicateK is KS = {〈a1,a2〉,〈a2,a1〉} (there is a edge from nodea1

to a2 and froma2 to a1).

The interpretation of the colorsC1 andC2 areCS
1 = {a1} andCS

2 = {a2}.

We now check that sentences

∀x(C1(x) ↔¬C2(x))



∀x∀y(K(x,y) → (C1(x) →¬C1(y))

and
∀x∀y(K(x,y) → (C2(x) →¬C2(y))

are true in the structure.S (that is,S is a model for the sentences). The first
of the sentences is equivalent to

∀x(C2(x) ↔¬C1(x)),

which also belongs to the set of sentences whenn = 2.

Now
S |= ∀x(C1(x) ↔¬C2(x))

if and only if

S [x 7→ a1] |=(C1(x)↔¬C2(x)) and S [x 7→ a2] |=(C1(x)↔¬C2(x))

Sincea1 ∈ CS
1 , we haveS [x 7→ a1] |= C1(x). Also, sincea1 6∈ CS

2 , it holds
S [x 7→ a1] 6|= C2(x). Thus

S [x 7→ a1] |= (C1(x) ↔¬C2(x))

Similarly we showS [x 7→ a2] |= (C1(x) ↔ ¬C2(x)), andS |= ∀x(C1(x) ↔
¬C2(x)) follows.

Now S |= ∀x∀y(K(x,y) → (C1(x) →¬C1(y)) if and only if

K(x,y) → (C1(x) →¬C1(y))

is true in

S [x 7→ a1,y 7→ a1], S [x 7→ a1,y 7→ a2],
S [x 7→ a2,y 7→ a1] ja S [x 7→ a2,y 7→ a2].

Because pairs〈a1,a1〉 and 〈a2,a2〉 don’t belong toKS , atomic sentence
K(x,y) is false in the first and the last case, and thenK(x,y) → (C1(x) →
¬C1(y)) is true in these cases. Since pair〈a1,a2〉 belongs toKS , S [x 7→
a1,y 7→ a2] |= K(x,y) and the proposition is true forS [x 7→ a1,y 7→ a2] if and
only if S [x 7→ a1,y 7→ a2] |= C1(x) →¬C1(y). This holds, becausea1 ∈CS

1
anda2 6∈ CS

2 , and thereforeS [x 7→ a1,y 7→ a2] |= C1(x) andS [x 7→ a1,y 7→
a2] |= ¬C2(y). The proposition is also true in the third case. Difference to
the previous one is that implicationC1(x) → ¬C1(y) is true inS , because
S [x 7→ a2,y 7→ a1] 6|=C1(x). ThusS is a model for∀x∀y(K(x,y)→ (C1(x)→
¬C1(y)).



Because the sentences are symmetrical,S is also a model for sentence

∀x∀y(K(x,y) → (C2(x) →¬C2(y)).

The models will be more complex, if the colors are implemented according
to formalizations (ii) or (iii).

c) We will define a structureS whenn = 2, where the set of sentences is not
satisfiable. We will choose as the universumeU = {a} (there is only one
node) and the interpretation of predicateKS = {〈a,a〉}. Now

∀x(C1(x) ↔¬C2(x))

is not satisfied in structureS , if

S [x 7→ a] 6|= C1(x) ↔¬C2(x).

So we can construct the interpretations of the color predicates as follows:

S [x 7→ a] |= C1(x) and S [x 7→ a] |= C2(x)

choosing
CS

1 = CS
2 = {a}

Now S cannot be a model for the set of sentences.


