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Solutions to demonstration problems

Solution to Problem 4

All of the solutions use either universal or existential oufgers or both. If we
want to say that some properpyx) holds for all thosex that have also property
P(x), we formalize that with¥x(P(x) — @(x)). If some propertyp(x) holds for
somex that also satisfie®(x), we use3ax(P(x) A @(x)). In the solutios many
predicates (e.d?(X) in the first case) are used to denote the type okthe

a) Ix(P(x) AV(x)), when
P(x) = xis a gate.
V(x) = xis faulty.

b) A(a) A (YX(A(X) A—(x=a) — N(a,x)), when
a = the algorithm in question
A(X) =xis an algorithm
N(x,y) = x is faster thary.



¢) Vx(K(x) — 3y(T(y) AR(xY))), when
K(x) = x is a participant of the course.
T(x) = x is a workstation
R(X,y) = X usesy.

d) Vx(T(x) — Vyvz(P(y) AP(z) AK(y,X) AK(z,X) — y=2)), when
P(X) = X is a process.
T(x) =xis afile.
K(x,y) = xwrites iny.

The above solutions are not the only possible ones.

Solution to Problem 5

a) Vy(IxX(P(x) AQ(X)) — L(x)).
b) 3x3y(P(x,y) VQ(Y, X)) < Vx-K(f(x))
c) VXVy(AAB)

Solution to Problem 6

Using the constartand functionf we get the set of term, f(c), f?(c), 3(c),...}.
More terms can be obtained using funct@rarguments of can be any pair from
the previous set, for examptgc,c) ja g(f3(c), f198(c)). Naturally these new
terms can again be used as argument$ fondg, and we get, e.df,(g( f>(c), f13(c)))
jag(g(c, f(c)), f&(c)). This process can be continued for arbitrarily many steps.

Solution to Problem 7

We represent trees as lists. Let cons&adenote an empty list, and consider bi-
nary functionc € %, (ensimmainen argumentti listan ensimmainen alkio jadoi
argumentti loput listasta), and unary function 73 (lehtisolmu). Functiore(x, y)
denotes a listx is the first element in the list angdis the rest of the list. Function

| (x) denotes that is a leaf node.

Consider the following trees:

a/\b a/LI\o

7\
b”  f



The first of these is representedlés), the second as(I(a),c(I(b),e)) and the
third asc(I(a), c(l(d),c(c(I(b),c(I(f),e)),e))).

Solution to Problem 8

A sentence is a formula with no free occurences of any variatdfe know that
VX@(x) is a sentenceg(t) means a formula in which each free occurence isf
replaced witht. Sincet is ground, alsap(t) is a sentence.

Solution to Problem 9
The pairs inN? can be placed in an array as follows:

(0,0) (0,1) (0,2) (0,3)
(L,O) (L,1) (1,2) (1,3
(2,00 (21) (22) (2,3

The idea is the same as when showing that there are equally ebments in
N? and inN, i.e., a bijective mapping frori¥ to pairs is defined a$(0) = (0,0)
and working along diagonals for larger values, for instari¢g) = (0,1), f(2) =
(1,0) etc.

Now, we choose the interpretations as follow$= (0, 0), and

f(c)* = (0,1) f(f(c))® = (1,0
f3(c)S = (0,2) f4c)® = (L1)
ThusfS is
f5:(xy) = (X,Y)
X = ()(Y+1) (1-9(x)(x—1)
Y =(1-9(x))(y+1)

whereg(Xx) is
(%) = 1, ifx=0.
9% = 0, otherwise.
Solution to Problem 10

a) In the graphs we are particularly interested in edges;shwve will denote
by predicateK (x,y) (there is a edge from nodeto nodey in the graph).
There are several possible ways to denote the colors.



(i) We can fix the set of the colors and represent them as @edic If
there aren different colors in seC, we define predicateS; (X), . ..,Cn(n).

A predicateC;i(x) means that the nodeis of the colorC;. The problem
description demands that each node has a unique color aniflttiere is a
edge between two nodes the nodes have different colors.

The first condition can be stated with a set of statementseofiom:
VX(Ci (X) — —|C1(X) VARRRWAN —\Cifl(X) A=Ciga A+ A —\Cn(X))
wherei = 1,...,n (notice that-Ci(X) is not in the conjunction of the right
side).
The second condition is formalized for eagfix) as follows:

vxvy(K (%, y) — (Gi(x) — —=Ci(y)))-

(i) The second possibility is to leave the definition of thedars open and
use a predicat¥ (x,y) (the nodex s of the colory).

Now the uniqueness of node colors can be expressed as:
VXYW2Z(V (X, Y) AV (X,2) — Yy = 2).
Informally, if a nodex has both colory andx, then the colory andz must,

in fact, be the same color.
The second condition can be expressed with:

VXvWZ(K(x,y) — (V(X,2) — =V (Y,2)).

(iii) The third possibility is to define a function symbal Now v(x) means
the color of the node. Because the value of a function is by definition
unique, only the second condition has to be formalized:

VXPY(K(%,Y) = =(V(X) = V(Y)))-

b) Let’s construct a model for the case (i) whes: 2. We will define a struc-
ture S, where the universume i$ = {a;,ay} (two nodes). The interpreta-
tion of predicateK is K = {(ay,ap), (ap,a1)} (there is a edge from node
to a and fromay to az).

The interpretation of the colof3; andC; areC; = {a;} andCs = {ay}.
We now check that sentences

VX(C1(x) < —C2(x))



VXYY(K(X,y) = (C1(x) — —Cy(y))
and
YXVY(K (X,Y) — (C2(X) — —Ca(y))

are true in the structures. (that is,§ is a model for the sentences). The first
of the sentences is equivalent to

VX(Cz (X) — —\C]_ (X) ) ,

which also belongs to the set of sentences whe?.

Now
S = WX(C1(X) < —Ca(x))

if and only if
Sx—a] = (C() = —Ca(x))  and  S[x—ag] = (Cu(X) = ~Ca(X))

Sincea; € C;, we haveS[x— a;] = C1(x). Also, sincea; ¢ Cs, it holds
S[x— a1 £ Co(x). Thus

Sx—a1] E (Ca(x) < ~Ca(x))

Similarly we showS$[x — ap| = (C1(x) «» =Cp(X)), and.§ = VX(Cy(X) <
—Cy(x)) follows.

Now S = VXWy(K(x,y) — (C1(Xx) — —Cy(y)) if and only if
K(xy) = (Ca(x) = —Ca(y))
IS true in

S[x— ag,y— ai], S[x— ar,y— ag],
Sx—ay—a ja Sx—apy— a.

Because pairga;,a;) and (az,a;) don’t belong toK?, atomic sentence
K(x,y) is false in the first and the last case, and tKér,y) — (Cy(X) —
—C1(y)) is true in these cases. Since pdiy,ap) belongs toK?, S[x —
a1,y — ap] = K(x,y) and the proposition is true fgt[x — a;,y — ap] if and
only if S[x+— ag,y+ ag] = C1(X) — —Ci(y). This holds, becauss € C;
anda, ¢ C5, and therefore§[x — ag,y — ag] |= C1(x) andS[x— ay,y —

ag] = —Ca(y). The proposition is also true in the third case. Differerxe t
the previous one is that implicatid@y (x) — —Cy(y) is true in$, because
S[x+— ag,y— az] £ Ci(x). ThusS is a model folwxvy(K(x,y) — (C1(X) —
—Ca(y))-



Because the sentences are symmetrica,also a model for sentence
PXY(K(X,Y) = (Ca(X) — ~Ca(y)).

The models will be more complex, if the colors are implemératecording
to formalizations (ii) or (iii).

We will define a structurg whenn = 2, where the set of sentences is not
satisfiable. We will choose as the universuthe= {a} (there is only one
node) and the interpretation of predic&té = {(a,a)}. Now

YX(C1(x) = —C2(x))
IS not satisfied in structur®, if
S[x— a] = Ci(X) « Ca(X).
So we can construct the interpretations of the color préetcas follows:
Sx— a] = Ci(x) and  S[x— al =C(x)

choosing
Ci=C={a

Now .S cannot be a model for the set of sentences.



