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Solutions to demonstration problems

Solution to Problem 4
We transform the propositions into CNF and clauses. The lastproposition in the
table is the negation of statement “both red lights are not onat the same time”,
that is,

¬(¬(P1∧P2))≡ P1∧P2.

Pi∨Ki∨Vi {Pi,Ki,Vi}
Pi→¬Ki∧¬Vi ≡ ¬Pi∨ (¬Ki∧¬Vi)

≡ (¬Pi∨¬Ki)∧ (¬Pi∨¬Vi) {¬Pi,¬Ki},{¬Pi,¬Vi}
Ki→¬Pi∧¬Vi ≡ (¬Ki∨¬Pi)∧ (¬Ki∨¬Vi) {¬Pi,¬Ki},{¬Ki,¬Vi}
Vi→¬Pi∧¬Ki ≡ (¬Vi∨¬Pi)∧ (¬Vi∨¬Ki) {¬Pi,¬Vi},{¬Ki,¬Vi}
¬(V 1∧V2) ≡ ¬V1∨¬V2 {¬V1,¬V2}
P1→ (K2∨V2) ≡ ¬P1∨K2∨V2 {¬P1,K2,V2}
P2→ (K1∨V1) ≡ ¬P2∨K1∨V1 {¬P2,K1,V1}
P1∧P2 {P1},{P2}

We show that the set of clauses given in the table is unsatisfiable (empty clause�
means contradiction), which implies that¬(P1∧P2) is derivable from the other
clauses.
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Solution to Problem 5
The chemical reactions can be formalized as implications, which can then be
transformed into clausul form. The resulting clauses are:

(1)

MgO+H2→Mg+H2O

=⇒MgO∧H2→Mg∧H2O

=⇒¬MgO∨¬H2∨ (Mg∧H2O)

=⇒(¬MgO∨¬H2∨Mg)∧ (¬MgO∨¬H2∨H2O)

The first reaction results in two clauses: :{¬MgO,¬H2,Mg} and{¬MgO,¬H2,H2O}.

(2)

C+O2→ CO2

=⇒C∧O2→ CO2

=⇒¬C∨¬O2∨CO2

=⇒{¬C,¬O2,CO2}

(3)

CO2 +H2O→ H2CO3

=⇒CO2∧H2O→ H2CO3

=⇒¬CO2∨¬H2O∨H2CO3

=⇒{¬CO2,¬H2O,H2CO3}

The elements availabe at the start are:

MgO∧H2∧O2∧C

=⇒{MgO},{H2},{O2}{C}

We denote the above set of clauses withΣ. now we want to prove thatΣ |= H2CO3.
The proof is constructed by showing thatΣ∪{¬H2CO3} is unsatisfiable.



�

{¬MgO}

{¬MgO,¬H2}

{¬H2O}

{O2} {¬H2O,¬O2}

{¬H2O,¬C,¬O2}

{¬C,¬O2,CO2} {¬CO2,¬H2O}

{¬H2CO3} {¬CO2,¬H2O,H2CO3}

{C}

{¬MgO,¬H2,H2O}

{H2}

{MgO}

Solution to Problem 6
The solution is obtained from “Computational Complexity” by C. Papadimitriou.
A deterministic Turing machine is a quadruple〈A,S,s0, t〉, where

• A is the alphabet,

• S is the set of states,

• t : S×A→ S×A×{→,←,↓} is the state transition function

• s0 ∈ S is the start state.

For our machine we haveS = {s}, A = {0,1}, s0 = s and the state transition
function is given in the following table:

p ∈ S σ ∈ A t(p,σ)
s 0 (h,1,−)
s 1 (s,0,→)
s ⊔ (h,1,−)
s ⊲ (s,⊲,→)

With input 1101 the computation goes as follows:(s,⊲,1101)
M
→ (s,⊲0,101)

M
→ (s,⊲00,01)

M
→ (h,⊲001,1).



Solution to Problem 7
The problem of 3-coloring a graph is as follows: “give a graphG, is there a way
to color the nodes inG using 3 colors so that no two adjacent nodes have same
color?”
Let N = {n1,n2, . . . ,nm} be the set of nodes andE ⊆ N×N the set of edges.
For each nodeni we take atomic propositionsRni,Gni ,Bni to denote that nodeni is
colored red, green or blue, respectively.
Each node is colored with some color, that is,Rni ∨Gni ∨Bni , for eachni.
No node is colored with two different colors, that is,

(Rni → (¬Gni ∧¬Bni))∧ (Gni → (¬Rni ∧¬Bni))∧ (Bni → (¬Rni ∧¬Gni)),

for eachni.
Finally, two adjacent color can’t have same color, that is,

(Rn→¬Rm)∧ (Gn→¬Gm)∧ (Bn→¬Bm),

for each(n,m) ∈ E.
Now, if we take the conjunction of all these propositions (denoted byφ), thenφ is
satisfiable iff the graph has a 3-coloring (the proof is omitted).


