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Solutions to demonstration problems

Solution to Problem 4

a) Assume that for someφ it holds Σ |= φ and Σ |= ¬φ. We useproof by
contradiction, that is, we assume thatΣ is satisfiable and show that this
leads to contradiction. IfΣ is satisfiable then there is a truth assignmentA

such that for allσ ∈ Σ, A |= σ. SinceΣ |= φ, it holdsA |= φ. On the other
hand, sinceΣ |= ¬φ, it holdsA |= ¬φ, which is equivalent toA 6|= φ. Since
no proposition can be true and false at the same time, this is acontradiction
and the original claim holds, that is,Σ is unsatisfiable. �

b) Let A be the only model forΣ. For each propositionφ it holds thatφ is ei-
ther true inA or φ is false inA , that is, eitherA |= φ or A 6|= φ (equivalently
A |= ¬φ). If A |= φ, it holdsΣ |= φ, and ifA |= ¬φ, it holdsΣ |= ¬φ. �

Solution to Problem 5
Cn(Σ) denotes the set of logical consequences of a set of propositionsΣ, that is,
Cn(Σ) = {φ | Σ |= φ}.

a) Assume thatΣ 6⊆ Cn(Σ). ThenΣ containsα such that there is a modelA of
Σ that is not a model ofα, that is,A 6|= α. On the other hand, sinceA is a
model ofΣ it holdsA |= σ for all σ ∈ Σ. Sinceα ∈ Σ, we haveA |= α. This
is a contradiction, and thusΣ ⊆ Cn(Σ). �

b) Consider arbitraryα∈Cn(Σ1). α is true in all the models ofΣ1, that is, in all
the truth assignments in which all the propositions inΣ1 are true. Because
Σ1 ⊆ Σ2, every model ofΣ2 is also a model ofΣ1. This implies thatα is true
in every model ofΣ2, that is,α ∈ Cn(Σ2). �

c) Assume thatΣ |= φ, that is, for allA such thatA |= σ for all σ ∈ Σ, it holds
A |= φ. Based on item b) it holds Cn(Σ) ⊆ Cn(Σ∪{φ}) and it suffices to
show that Cn(Σ∪ {φ}) ⊆ Cn(Σ). Consider arbitraryα ∈ Cn(Σ∪ {φ}). It
holdsΣ∪{φ} |= α, that is,α is true in every model ofΣ∪{φ}. But these
are exactly the same as the models ofΣ, that is,Σ |= α andα ∈ Cn(Σ). �



Solution to Problem 6
We choose the following atomical propositions.

A = “person 1 votes yes”
B = “person 2 votes yes”
C = “person 3 votes yes”
Y = “majority of yes-votes”

Two yes-votes results in majority for yes.

A∧B → Y A ∧C → Y B∧C → Y

Two no-votes results in minority of yes votes.

¬A∧¬B →¬Y ¬ A∧¬C →¬Y ¬B∧¬C →¬Y

When there are three persons and a chairperson, we take in addition the following
atomical propositions.

P = “chair votes yes”
IC = “result of the vote depends on the vote of the chair”

Three yes or no votes gives the result directly.

A∧B∧C →Y ¬A ∧¬B∧¬C →¬Y

Otherwise, the vote of the chairperson impacts the outcome of the vote.

A∧¬B∧¬C → IC ¬A∧B∧¬C → IC ¬A∧¬B∧C → IC
A∧B∧¬C → IC A∧¬B∧C → IC ¬A∧B∧C → IC

The impact of the chairperson’s vote.

IC∧P → Y IC∧¬P →¬Y

Naturally, there are also several other possibilities how to model the voting system.

Solution to Problem 7
Choose for example the following atomical propositions.

A = “a valid period ticket on the card”
B = “a valid value ticket on the card”
C = “a valid transfer ticket on the card”

V = “green light in the reader”
K = “yellow light in the reader”
P = “red light in the reader”

D = “period≤ 3 days”
E = “value≤ 5 euros”
F = “other error”



Now the system can be formalized for example as follows.

1. A∨B∨C →V

2. D∨E → K ∧V

3. ¬A∨¬C∨F → P


