Solutions to demonstration problems

Solution to Problem 4

Boolean statements can be represented using basic cases, thus

\[a == b \equiv \text{def} \neg (a > b) \land \neg (b > a) \]

and

\[a < b \equiv \text{def} \quad b > a \]
\[a \neq b \equiv \text{def} \quad \neg (a == b) \]

We choose \(A = "a > b" \) and \(B = "b > a" \) as atomic propositions. This way the statement in item (a) is

\[\neg ((\neg A \land \neg B) \lor B) \]

and respectively, in item (b):

\[\neg (\neg A \land \neg B) \land \neg B \]

Notice that the second proposition is obtained from the first by applying de Morgan’s rule and thus the statements are logically equivalent.

Solution to Problem 5

(a) \(\models_p [x > 0] y = x + 1 \ [y > 1] \)

Starting from the postcondition and applying the rule for assignment backwards, we obtain \([x + 1 > 1] y = x + 1 \ [y > 1]\)

\(x > 0 \) is equivalent to \(x + 1 > 1 \), and the claim holds.

(b) \(\models_p [\text{true}] y = x \ ; \ y = x + x + y \ [y == 3 \times x] \)

Applying twice the assignment rule, we obtain:

\([x + x + y == 3 \times x] y = x + x + y \ [y == 3 \times x]\)
\([x + x + x == 3 \times x] y = x \ [x + x + y == 3 \times x]\)
and furthermore using the rule for composition:

\[x + x + x = 3x \]
\[y = x ; \ y = x + x + y \]
\[y = 3x \].

Statement \(x + x + x = 3x \) evaluates to true for all integers, and thus the claim holds.

(c) \(\models_p [x > 1] a = 1 ; y = x ; y = y - a \ y > 0 \ & \ x > y \)

\[y - a > 0 \ & \ x > y - a \ y = y - a \ y > 0 \ & \ x > y \]
\[x - a > 0 \ & \ x > x - a \ y = x \ y - a > 0 \ & \ x > y - a \]
\[x - 1 > 0 \ & \ x > x - 1 \ a = 1 \ x - a > 0 \ & \ x > x - a \].

Now, the latter part of \(x - 1 > 0 \ & \ x > x - 1 \) evaluates to true for all integers and \(x - 1 > 0 \) is equivalent to \(x > 1 \). Thus the claim holds.

Solution to Problem 6

\[\text{true} \ & \ ! (x > y) \ [! (x > y) \ [x <= y] \ [x = min(x, y)] \ z = x \ [z = min(x, y)] \text{ and} \]
\[\text{true} \ & \ (x > y) \ [(x > y)] \ [y = min(x, y)] \ z = y \ [z = min(x, y)] \].

Thus,

\[\text{true} \]
\[\text{if}(x > y) \ \text{then} \{ \]
\[\quad \ z = y \]
\[\} \ \text{else} \{ \]
\[\quad \ z = x \]
\[\} \ [z = min(x, y)] \]

Solution to Problem 7

First, we need and invariant for the loop. Inspecting the code, we note that the value of variable \(z \) increases while the value for variable \(v \) decreases. Moreover, the sum of \(z \) and \(v \) stays constant. This constant is obtained for the initial values of \(z \) and \(v \), as thus we have invariant \(I: z + v = x + y \).

We check that \(I \) really is an invariant:

\[z + v - 1 = x + y \ v = v - 1 \ [z + v = x + y] \]
\[z + v = x + y \ [z + v - 1 = x + y] \ z = z + 1 \ [z + v - 1 = x + y] \]
Thus:

\[
\begin{align*}
& z + v = x + y \\
& \text{while}(!(v == 0)) \{
& \quad z = z + 1; \\
& \quad v = v - 1 \\
& \}\ [z + v = x + y \ \& \& v = 0]
\end{align*}
\]

Finally, we need to find the preconditions for the assignments before the loop:

\[
\begin{align*}
& z + y = x + y \\
& v = y \\
& x + y = x + y \\
& z = x \\
& z + y = x + y
\end{align*}
\]

Now \(x + y = x + y \) evaluates to true for all integers.

(b) \(\models_t [0 \leq y] \ \sum \ [z = x + y] \)

To prove total correctness, we need to make sure the program terminates.

\[
\begin{align*}
& [0 \leq y] [x + y = x + y \ \& \& 0 \leq y] z = x [z + y = x + y \ \& \& 0 \leq y] \\
& [z + y = x + y \ \& \& 0 \leq y] v = y [z + v = x + y \ \& \& 0 \leq v] \\
& \text{while}(!(v == 0)) \{
& \quad [z + v = x + y \ \& \& 0 \leq v - 1 \ \& \& v - 1 < n] z = z + 1; \\
& \quad [z + v - 1 = x + y \ \& \& 0 \leq v - 1 \ \& \& v - 1 < n] \\
& \quad [z + v - 1 = x + y \ \& \& 0 \leq v - 1 \ \& \& v - 1 < n] v = v - 1 \\
& \quad [z + v = x + y \ \& \& 0 \leq v \ \& \& v < n] \\
& \}\ [z + v = x + y \ \& \& 0 \leq v \ \& \& v = 0] [z = x + y]
\end{align*}
\]