Please note the following: your answers will be graded only if you have passed all the three home assignments before the exam!

Assignment 1 (10p)

(a) Define the following concepts: ground term, modus ponens, and the scope of a quantifier. (3 × 2p)

(b) What is meant by the notation \(C_n(\Sigma) \)?

Prove in detail that if \(\Sigma_1 \subseteq \Sigma_2 \), then \(C_n(\Sigma_1) \subseteq C_n(\Sigma_2) \). (4p)

Assignment 2 (10p) Prove the following claims using semantic tableaux:

(a) \(\models (A \rightarrow B) \land (B \rightarrow C) \land (C \rightarrow A) \rightarrow (A \leftrightarrow C) \)

(b) \(\models \forall x \exists y (P(x) \land Q(y)) \rightarrow \exists y \forall x (P(x) \land Q(y)) \)

Tableau proofs must contain all intermediary steps !!!

Assignment 3 (10p) Derive a Prenex normal form and a clausal form (i.e. a set of clauses \(S \)) for the sentence

\[\neg \exists x \forall y (\forall z R(x, z) \rightarrow \forall x R(x, y)) \]

Make \(S \) as simple as possible. Prove that \(S \) is unsatisfiable using resolution.

Assignment 4 (10p) Let us represent natural numbers 0, 1, 2, ... using ground terms 0, \(s(0) \), \(s(s(0)) \), ... built of a constant symbol 0 and a function symbol \(s \) which is interpreted as the function \(s(x) = x + 1 \) for natural numbers \(x \).

(a) Define a predicate \(D(x, y, z) = \) “the distance between numbers \(x \) and \(y \) is \(z \)” using sentences of predicate logic so that your definition covers all natural numbers (represented in the way explained above).

(b) Give a model \(S \models \Sigma \) of your definition \(\Sigma \) on the basis of which it holds that

\[\Sigma \not\models \exists x \exists y (D(x, x, x) \land D(y, y, y) \land \neg (x = y)) \]

Assignment 5 (10p)

Explain how the weakest precondition \(B_1 \) of an if-statement

\[
\text{if}(B) \text{ then } \{C_1\} \text{ else } \{C_2\}
\]

can be formed given a postcondition \(B_2 \) for it.

Consider the following program Minus:

\[
v = x; z = y; \text{while}(!(z == 0)) \{z = z - 1; v = v - 1\}.
\]

Use weakest preconditions and a suitable invariant to establish

\[\models_p [\text{true}] \text{ Minus } [v == x - y]. \]

The name of the course, the course code, the date, your name, your student id, and your signature must appear on every sheet of your answers.