T-79.3001 Logic in computer science: foundations Sp Exercise 8 ([NS, 1997], Predicate Logic, Chapters 4 and 9) March 27–29, 2007

Solutions to demonstration problems

4. Let *R* be a binary predicate with interpretation $R^{\varsigma} \subseteq U \times U$ (the set *U* is the domain of structure ς). In the following table we give definitions for some properties of relation R^{ς} .

Property	Definition
reflexivity	$\forall x \mathbf{R}(x, x)$
irreflexivity	$\forall x \neg R(x, x)$
symmetry	$\forall x \forall y (R(x, y) \to R(y, x))$
asymmetry	$\forall x \forall y (R(x, y) \to \neg R(y, x))$
transitivity	$\forall x \forall y \forall z (R(x, y) \land R(y, z) \to R(x, z))$
seriality	$\forall x \exists y R(x, y)$

Consider a domain *U* consisting of people. Give examples of relations R^{δ} , $(\emptyset \subset R^{\delta} \subset U^2)$, that have properties described above.

Solution. The graphs given below illustrate different properties of relations. Here the nodes are the elements in a structure and there is an edge between two nodes $x \in A, y \in A$ if and only if R(x, y) is true for x, y.

Reflexivity $(\forall x R(x, x))$ means that every node in the graph has an edge to itself and irreflexivity $(\forall x \neg R(x, x))$ means that no node has an edge to itself. First of the graphs is reflexive, the second irreflexive and the third is neither reflexive nor irreflexive.

Symmetry $(\forall x \forall y(R(x,y) \rightarrow R(y,x)))$ means that whenever there is an edge from *x* to *y*, there is also an edge from *y* to *x*. Asymmetric $(\forall x \forall y(R(x,y) \rightarrow \neg R(y,x)))$ graph has no edge from *y* to *x* if there is edge from *x* to *y*. The first graph is symmetric, the second asymmetric and the third is neither.

In a transitive graph $(\forall x \forall y \forall z(R(x, y) \land R(y, z) \rightarrow R(x, z)))$ if there is a path from *x* to *y* along the edges, then there is an edge from *x* to *y* in the graph. The second graph is transitive.

In a serial graph $(\forall x \exists y R(x, y))$ there is at least one edge from each node *x*. The first and the third graph are serial.

Now define relations T(x, y) (*x* knows *y*), N(x, y) (*x* is married to *y*), V(x, y) (*y* is a parent of *x*) ja E(x, y) (*y* is an ancestor of *x*). There relations have the following properties.

Relation	refl.	irrefl.	symm.	asymm.	trans.	serial.
knows	*		*			*
married to		*	*			
parent		*		*		*
ancestor		*		*	*	*

5. Show that the following sentences are not valid by constructing a structure in which the sentence is false, i.e., construct a counter-example.

a) $\forall x \exists y P(x, y) \rightarrow \exists y \forall x P(x, y)$ b) $\exists x(P(x) \lor Q(x)) \rightarrow \exists x P(x) \land \exists x Q(x)$ c) $\neg \forall x(P(x) \rightarrow R(x)) \lor \neg \forall x(P(x) \rightarrow \neg R(x))$

Solution.

- a) Consider *S* with domain $U = \{1,2\}$ and $P^S = \{\langle 1,1 \rangle, \langle 2,2 \rangle\}$. Now it holds $S \models \forall x \exists y P(x,y)$ and $S \not\models \exists y \forall x P(x,y)$ (there is no value for *y* such that for all *x* we would have $\langle x,y \rangle \in P^S$). Thus the implication is false in *S*.
- b) Consider S with domain $U = \{1\}$ and $P^S = \{1\}$, $Q^{\mathcal{A}} = \emptyset$. Now the left side of the implication is true and the right side false in S, and S is a counterexample.
- c) Consider S with domain $U = \{1\}$ ia $P^S = \emptyset, R^S = \{1\}$. Now $\forall x(P(x) \rightarrow R(x))$ is true in S since the left side of the implication is false in S. Similarly $S \models \forall x(P(x) \rightarrow \neg R(x))$.
- **6.** Transform the following sentences into conjunctive normal form and perform skolemization.

a) $\forall y (\exists x P(x, y) \rightarrow \forall z Q(y, z)) \land \exists y (\forall x R(x, y) \lor \forall x Q(x, y))$ b) $\exists x \forall y R(x, y) \leftrightarrow \forall y \exists x P(x, y)$ c) $\forall x \exists y Q(x, y) \lor (\exists x \forall y P(x, y) \land \neg \exists x \exists y P(x, y))$

d) $\neg(\forall x \exists y P(x, y) \rightarrow \exists x \exists y R(x, y)) \land \forall x \neg \exists y Q(x, y)$

Spring 2007

Solution.	a) $\forall x \phi(x) \rightarrow \psi$
– Remove connectives \rightarrow and \leftrightarrow .	b) $\exists x \phi(x) \rightarrow \psi$
– Negations in, quantifiers out.	c) $\phi \rightarrow \forall x \psi(x)$
- Use distribution rules to obtain CNF / DNF.	d) $\phi \rightarrow \exists x \psi(x)$

a)

 $\forall y (\exists x P(x, y) \to \forall z Q(y, z)) \land \exists y (\forall x R(x, y) \lor \forall x Q(x, y))$ $\equiv \forall y (\neg \exists x P(x, y) \lor \forall z Q(y, z)) \land \exists y (\forall x R(x, y) \lor \forall x Q(x, y))$ $\equiv \forall y (\forall x \neg P(x, y) \lor \forall z Q(y, z)) \land \exists y (\forall x R(x, y) \lor \forall x Q(x, y))$ $\equiv \exists y_1(\forall y(\forall x \neg P(x, y) \lor \forall zQ(y, z)) \land (\forall xR(x, y_1) \lor \forall xQ(x, y_1)))$ $\equiv \exists y_1 \forall y_2((\forall x \neg P(x, y_2) \lor \forall z Q(y_2, z)) \land (\forall x R(x, y_1) \lor \forall x Q(x, y_1)))$ $\equiv \exists y_1 \forall y_2 \forall x_1 \forall x_2 \forall z \forall x_3 ((\neg P(x_1, y_2) \lor Q(y_2, z)) \land (R(x_2, y_1) \lor Q(x_3, y_1)))$

This is the Prenex normal form and the part inside quantifiers is in CNF. Skolemization:

 $\forall y_2 \forall x_1 \forall x_2 \forall z \forall x_3 ((\neg P(x_1, y_2) \lor Q(y_2, z)) \land (R(x_2, c) \lor Q(x_3, c)))$

c)

 $\forall x \exists y Q(x, y) \lor (\exists x \forall y P(x, y) \land \neg \exists x \exists y P(x, y))$ $\equiv \forall x \exists y Q(x, y) \lor (\exists x \forall y P(x, y) \land \forall x \forall y \neg P(x, y))$ $\equiv \forall x \exists y Q(x,y) \lor \exists x_1 \forall y_1 \forall x_2 \forall y_2 (P(x_1,y_1) \land \neg P(x_2,y_2))$ $\equiv \exists x_1 \forall x_3 \exists y_3 \forall y_1 \forall x_2 \forall y_2 (Q(x_3, y_3) \lor (P(x_1, y_1) \land \neg P(x_2, y_2)))$

This is the Prenex normal form and we continue to get CNF.

 $\exists x_1 \forall x_3 \exists y_3 \forall y_1 \forall x_2 \forall y_2 ((Q(x_3, y_3) \lor P(x_1, y_1)) \land (Q(x_3, y_3) \lor \neg P(x_2, y_2)))$

Skolemization:

 $\forall x_3 \forall y_1 \forall x_2 \forall y_2 ((Q(x_3, f(x_3)) \lor P(c, y_1)) \land (Q(x_3, f(x_3)) \lor \neg P(x_2, y_2)))$

7. Use the rules in Lemma 9.1 [NS, 1997, page 129] to obtain rules for the following cases.

Solution.

a)

 $\forall x \phi(x) \rightarrow \Psi$ $\equiv \neg \forall x \phi(x) \lor \psi$ $\equiv \exists x \neg \phi(x) \lor \psi$ $\equiv \exists x_1(\neg \phi(x_1) \lor \psi)$ $\equiv \exists x_1(\phi(x_1) \rightarrow \psi)$

b) Similarly, $\exists x \phi(x) \rightarrow \psi \equiv \forall x_1(\phi(x_1) \rightarrow \psi)$. c)

> $\phi \rightarrow \forall x \psi(x)$ $\equiv \neg \phi \lor \forall x \psi(x)$ $\equiv \forall x_1(\neg \phi \lor \psi(x_1))$ $\equiv \forall x_1(\phi \rightarrow \psi(x_1))$

d) Similarly, $\phi \to \exists x \psi(x) \equiv \exists x_1(\phi \to \psi(x_1))$.

8. Transform the following sentences into clausal form.

a) $\neg \exists x ((P(x) \rightarrow P(a)) \land (P(x) \rightarrow P(b)))$ b) $\forall y \exists x P(x, y)$ c) $\neg \forall y \exists x G(x, y)$ d) $\exists x \forall y \exists z (P(x,z) \lor P(z,y) \to G(x,y))$

Solution.

a) Sentence $\neg \exists x((P(x) \rightarrow P(a)) \land (P(x) \rightarrow P(b)))$: Eliminate implications: $\neg \exists x ((\neg P(x) \lor P(a)) \land (\neg P(x) \lor P(b))).$ Push \neg inside $\exists x$: $\forall x \neg ((\neg P(x) \lor P(a)) \land (\neg P(x) \lor P(b))).$

```
Push negations inside the formula:
         \forall x((P(x) \land \neg P(a)) \lor (P(x) \land \neg P(b))).
    Bring P(x) outside: \forall x (P(x) \land (\neg P(a) \lor \neg P(b))).
    Drop universal quantifiers: P(x) \land (\neg P(a) \lor \neg P(b)).
    Clausal form: {{P(x)}, {\neg P(a), \neg P(b)}}.
b) Sentence \forall y \exists x P(x, y):
    Skolemization: \forall y P(f(y), y).
    Drop universal quantifiers: P(f(y), y).
    Clausal form: \{\{P(f(y), y)\}\}.
c) Sentence \neg \forall y \exists x G(x, y):
    Push \neg inside \forall y: \exists y \neg \exists x G(x, y).
    Push \neg inside \exists x: \exists y \forall x \neg G(x, y)
    Skolemization: \forall x \neg G(x, c).
    Drop universal quantifiers: \neg G(x, c).
    Clausal form: \{\{\neg G(x,c)\}\}.
d) Sentence \exists x \forall y \exists z (P(x, z) \lor P(z, y) \to G(x, y)):
    Eliminate implication: \exists x \forall y \exists z (\neg (P(x, z) \lor P(z, y)) \lor G(x, y)).
    Push negations inside:
        \exists x \forall y \exists z ((\neg P(x,z) \land \neg P(z,y)) \lor G(x,y)).
    Push G(x, y) inside the formula:
         \exists x \forall y \exists z ((\neg P(x,z) \lor G(x,y)) \land (\neg P(z,y) \lor G(x,y))).
    Skolemization: \forall y \exists z ((\neg P(c,z) \lor G(c,y)) \land (\neg P(z,y) \lor G(c,y))).
    Skolemization: \forall y((\neg P(c, f(y)) \lor G(c, y)) \land (\neg P(f(y), y) \lor G(c, y))).
    Drop universal quantifiers:
         (\neg P(c, f(y)) \lor G(c, y)) \land (\neg P(f(y), y) \lor G(c, y)).
    Clausal form:
        \{\{\neg P(c, f(y)), G(c, y)\}, \{\neg P(f(y), y), G(c, y)\}\}.
```