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Solutions to demonstration problems

4. Formalize the following sentences using predicate logic:

a) There is a faulty gate.

b) This algorithm is the fastest.

c) Each participant of this course has a workstation to use

d) Only one process can write in each file at a time

Draw the syntax trees for sentences a) and b).

Solution. All of the solutions use either universal or existential quantifiers
or both. If we want to say that some propertyφ(x) holds for all thosex that
have also propertyP(x), we formalize that with:∀x(P(x) → φ(x)). If some
propertyφ(x) holds for somex that also satisfiesP(x), we use∃x(P(x)∧
φ(x)). In the solutios many predicates (e.g.P(x) in the first case) are used
to denote the type of thex.

a) ∃x(P(x)∧V (x)), when
P(x) = x is a gate.
V (x) = x is faulty.
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b) A(a)∧ (∀x(A(x)∧¬(x = a) → N(a,x)), when
a = the algorithm in question
A(x) = x is an algorithm
N(x,y) = x is faster thany.
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c) ∀x(K(x) →∃y(T (y)∧R(x,y))), when
K(x) = x is a participant of the course.
T (x) = x is a workstation
R(x,y) = x usesy.

d) ∀x(T (x) →∀y∀z(P(y)∧P(z)∧K(y,x)∧K(z,x)→ y = z)), when
P(x) = x is a process.
T (x) = x is a file.
K(x,y) = x writes iny.

The above solutions are not the only possible ones.

5. Remove unnecessary parenthesis so that the meaning of statement does not
change.

a) (∀y((∃x(P(x)∧Q(x))) → L(y)))

b) ((∃x(∃y(P(x,y)∨Q(y,x))))↔ (∀x(¬K( f (x)))))

c) (∀x(∀y(A∧B)))

Solution.

a) ∀y(∃x(P(x)∧Q(x)) → L(x)).

b) ∃x∃y(P(x,y)∨Q(y,x)) ↔∀x¬K( f (x))

c) ∀x∀y(A∧B)

6. What ground (variable-free) terms can you compose from a constantc, a
unary function symbolf and a binary function symbolg?

Solution. Using the constantc and function f we get the set of terms
{c, f (c), f 2(c), f 3(c), . . .}. More terms can be obtained using functiong,
arguments ofg can be any pair from the previous set, for exampleg(c,c)



ja g( f 3(c), f 108(c)). Naturally these new terms can again be used as argu-
ments forf andg, and we get, e.g,f (g( f 5(c), f 13(c))) ja g(g(c, f (c)), f 8(c)).
This process can be continued for arbitrarily many steps.

7. Represent arbitrary trees with function symbols using at most three constant
or function symbols.

Solution. We represent trees as lists. Let constante denote an empty list,
and consider binary functionc ∈ F2 (ensimmäinen argumentti listan en-
simmäinen alkio ja toinen argumentti loput listasta), andunary function
l ∈ F1 (lehtisolmu). Functionc(x,y) denotes a list:x is the first element
in the list andy is the rest of the list. Functionl(x) denotes thatx is a leaf
node.

Consider the following trees:

a •

a b

•

a d •

b f

The first of these is represented asl(a), the second asc(l(a),c(l(b),e)) and
the third asc(l(a), c(l(d),c(c(l(b),c(l( f ),e)),e))).

8. Show that if∀xφ(x) is a sentence andt is a ground term, thenφ(t) is a
sentence.

Solution. A sentence is a formula with no free occurences of any variable.
We know that∀xφ(x) is a sentence.φ(t) means a formula in which each free
occurence ofx is replaced witht. Sincet is ground, alsoφ(t) is a sentence.

9. Consider a domainN2 = {〈x,y〉|x ∈ N,y ∈ N}. Choose interpretations for
a constantc and a unary function symbolf ∈ F1 such that each element in
the domain has an interpretation.

Solution. The pairs inN2 can be placed in an array as follows:

〈0,0〉 〈0,1〉 〈0,2〉 〈0,3〉 · · ·
〈1,0〉 〈1,1〉 〈1,2〉 〈1,3〉 · · ·
〈2,0〉 〈2,1〉 〈2,2〉 〈2,3〉 · · ·

...
...

...
...

. . .

The idea is the same as when showing that there are equally many elements
in N

2 and inN, i.e., a bijective mapping fromN to pairs is defined asf (0) =

〈0,0〉 and working along diagonals for larger values, for instance, f (1) =
〈0,1〉, f (2) = 〈1,0〉 etc.

Now, we choose the interpretations as follows:cS = 〈0,0〉, and

f (c)S = 〈0,1〉 f ( f (c))S = 〈1,0〉
f 3(c)S = 〈0,2〉 f 4(c)S = 〈1,1〉

...
...

Thus f S is

f S : 〈x,y〉 → 〈x′,y′〉

x′ = g(x)(y+1)+(1−g(x))(x−1)

y′ = (1−g(x))(y+1)

whereg(x) is

g(x) =

{

1, if x = 0.
0, otherwise.

10. A graph is a setS of nodes and a setK of edges between the nodes (K ⊆
S×S). The nodess ands′ of the graph are adjacent, if they are connected
with an edge (〈s,s′〉 ∈ K). Let C be a set of colors. The problem ofnode
coloring is to find a color inC for each node of the graph so that each node
has a unique color and two adjacent nodes have different colors.

a) Formalize the node coloring problem using predicate logic.

b) Give a model for your formalization.

c) Give a structure that doesn’t satisfy your formalization.

a) In the graphs we are particularly interested in edges, which we will
denote by predicateK(x,y) (there is a edge from nodex to nodey in
the graph). There are several possible ways to denote the colors.

(i) We can fix the set of the colors and represent them as predicates. If
there aren different colors in setC, we define predicatesC1(x), . . . ,Cn(n).
A predicateCi(x) means that the nodex is of the colorCi. The prob-
lem description demands that each node has a unique color andthat if
there is a edge between two nodes the nodes have different colors.

The first condition can be stated with a set of statements of the form:

∀x(Ci(x) ↔¬C1(x)∧· · ·∧¬Ci−1(x)∧¬Ci+1∧· · ·∧¬Cn(x))



wherei = 1, . . . ,n (notice that¬Ci(x) is not in the conjunction of the
right side).

The second condition is formalized for eachCi(x) as follows:

∀x∀y(K(x,y) → (Ci(x) →¬Ci(y))).

(ii) The second possibility is to leave the definition of the colors open
and use a predicateV (x,y) (the nodex is of the colory).

Now the uniqueness of node colors can be expressed as:

∀x∀y∀z(V (x,y)∧V (x,z) → y = z).

Informally, if a nodex has both colorsy andx, then the colorsy andz
must, in fact, be the same color.

The second condition can be expressed with:

∀x∀y∀z(K(x,y) → (V (x,z) →¬V (y,z)).

(iii) The third possibility is to define a function symbolv. Now v(x)
means the color of the nodex. Because the value of a function is by
definition unique, only the second condition has to be formalized:

∀x∀y(K(x,y) →¬(v(x) = v(y))).

b) Let’s construct a model for the case (i) whenn = 2. We will define a
structureS , where the universume isU = {a1,a2} (two nodes). The
interpretation of predicateK is KS = {〈a1,a2〉,〈a2,a1〉} (there is a
edge from nodea1 to a2 and froma2 to a1).

The interpretation of the colorsC1 andC2 areCS1 = {a1} andCS2 =
{a2}.

We now check that sentences

∀x(C1(x) ↔¬C2(x))

∀x∀y(K(x,y) → (C1(x) →¬C1(y))

and
∀x∀y(K(x,y) → (C2(x) →¬C2(y))

are true in the structure.S (that is,S is a model for the sentences). The
first of the sentences is equivalent to

∀x(C2(x) ↔¬C1(x)),

which also belongs to the set of sentences whenn = 2.
Now

S |= ∀x(C1(x) ↔¬C2(x))

if and only if

S [x 7→ a1] |=(C1(x)↔¬C2(x)) and S [x 7→ a2] |=(C1(x)↔¬C2(x))

Sincea1 ∈ CS1 , we haveS [x 7→ a1] |= C1(x). Also, sincea1 6∈ CS2 , it
holdsS [x 7→ a1] 6|= C2(x). Thus

S [x 7→ a1] |= (C1(x) ↔¬C2(x))

Similarly we showS [x 7→ a2] |=(C1(x)↔¬C2(x)), andS |=∀x(C1(x)↔
¬C2(x)) follows.

Now S |= ∀x∀y(K(x,y) → (C1(x) →¬C1(y)) if and only if

K(x,y) → (C1(x) →¬C1(y))

is true in

S [x 7→ a1,y 7→ a1], S [x 7→ a1,y 7→ a2],
S [x 7→ a2,y 7→ a1] ja S [x 7→ a2,y 7→ a2].

Because pairs〈a1,a1〉 and 〈a2,a2〉 don’t belong toKS , atomic sen-
tenceK(x,y) is false in the first and the last case, and thenK(x,y) →
(C1(x) → ¬C1(y)) is true in these cases. Since pair〈a1,a2〉 belongs
to KS , S [x 7→ a1,y 7→ a2] |= K(x,y) and the proposition is true for
S [x 7→ a1,y 7→ a2] if and only if S [x 7→ a1,y 7→ a2] |=C1(x)→¬C1(y).
This holds, becausea1 ∈CS1 anda2 6∈CS2 , and thereforeS [x 7→ a1,y 7→
a2] |= C1(x) andS [x 7→ a1,y 7→ a2] |= ¬C2(y). The proposition is also
true in the third case. Difference to the previous one is thatimplication
C1(x)→¬C1(y) is true inS , becauseS [x 7→ a2,y 7→ a1] 6|=C1(x). Thus
S is a model for∀x∀y(K(x,y) → (C1(x) →¬C1(y)).
Because the sentences are symmetrical,S is also a model for sentence

∀x∀y(K(x,y) → (C2(x) →¬C2(y)).

The models will be more complex, if the colors are implemented ac-
cording to formalizations (ii) or (iii).

c) We will define a structureS whenn = 2, where the set of sentences
is not satisfiable. We will choose as the universumeU = {a} (there is
only one node) and the interpretation of predicateKS = {〈a,a〉}. Now

∀x(C1(x) ↔¬C2(x))



is not satisfied in structureS , if

S [x 7→ a] 6|= C1(x) ↔¬C2(x).

So we can construct the interpretations of the color predicates as fol-
lows:

S [x 7→ a] |= C1(x) and S [x 7→ a] |= C2(x)

choosing
CS1 = CS2 = {a}

Now S cannot be a model for the set of sentences.


