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Solutions to demonstration problems

4. Find disjunctive and conjunctive normal forms for the following proposi-
tions using (1) the transformation rules and (2) semantic tableaux.

a) A → (B →C)
Solution. Start by removing implications.

A → (B →C) ≡ ¬A∨ (¬B∨C)

≡ ¬A∨¬B∨C.

This results in both the conjunctive and the disjunctive normal form
for the proposition. When using semantic tableaux for finding the dis-
junctive normal form forφ, one starts with (T φ).

T (A → (B →C))

F(A) T (B →C)

F(B) T (C)

Now one can reads the disjuncts from the open branches. In this case
each of them only contains one literal. Thus we get¬A ∨¬B ∨C,
which is (of course) the same as obtained by applying the transforma-
tion rules.

For conjunctive normal form, one starts from (Fφ).

F(A → (B →C))

T (A)

F(B →C)

T (B)

F(C)

We getA∧B∧¬C from the open branch, and this is the disjunctive
normal form for the negation of the original proposition. Negating

this, we get the conjunctive normal form for the original proposition
by applying de Morgan rules.

A → (B →C) ≡ ¬¬(A → (B →C))

≡ ¬(¬(A → (B →C)))

≡ ¬(A∧B∧¬C)

≡ ¬A∨¬B∨C.

b) ¬A ↔ ((A∨¬B) → B)
Solution. One removes equivalence and implications first, then push
negations in front of atomic propositions and finally, applythe dis-
tributivity of disjucntion over conjunction.

¬A ↔ ((A∨¬B)→ B)

≡ (¬A → ((A∨¬B)→ B))∧ (((A∨¬B)→ B) →¬A) [↔ e]

≡ (A∨ (¬(A∨¬B)∨B))∧ (¬(¬(A∨¬B)∨B)∨¬A) [→ e]

≡ (A∨ ((¬A∧B)∨B))∧ (((A∨¬B)∧¬B)∨¬A) [¬ s]

≡ (A∨ ((¬A∨B)∧ (B∨B)))∧ ((A∨¬B∨¬A)∧ (¬B∨¬A)) [∧ u]

≡ (A∨¬A∨B)∧ (A∨B)∧ (A∨¬A∨B)∧ (¬A∨¬B) [∧ u]

≡ (A∨B)∧ (¬A∨¬B).

This is the conjunctive normal form. In the last step, we haveremoved
disjunctions of the formA∨¬A∨B because these are always true, that
is, A∨¬A∨B ≡⊤. Now, to get the disjunctive normal form, we apply
the distributivity of conjunction:

(A∨B)∧ (¬A∨¬B)

≡ (A∧ (¬A∨¬B))∨ (B∧ (¬A∨¬B)) [∨ u]

≡ (A∧¬A)∨ (A∧¬B)∨ (¬A∧B)∨ (B∧¬B) [∨ u]

≡ (A∧¬B)∨ (¬A∧B)

In the last step, we have eliminated multible occurences of same literal
in one conjunct and the conjuncts that are always false (containing
literal and its complement).



Same with semantic tableaux.

T (¬A ↔ ((A∨¬B) → B))

T (¬A)

T ((A∨¬B) → B)

F(A)

F(A∨¬B)

F(A)

F(¬B)

T (B)

T (B)

F(¬A)

F((A∨¬B) → B)

T (A)

T (A∨¬B)

F(B)

T (A) T (¬B)

F(B)

From open braches we get the disjunctive normal form:(A∧¬B)∨
(¬A∧B). Conjunctive normal form can be obtained similarly to item
a).

c) ¬((A ↔¬B) →C)
Solution.

¬((A ↔¬B) →C)

≡ ¬((A →¬B)∧ (¬B → A) →C) [↔ e]

≡ ¬(¬((¬A∨¬B)∧ (¬¬B∨A))∨C) [→ e]

≡ (¬A∨¬B)∧ (A∨B)∧¬C (∗) [¬ s]

This is the conjunctive normal form. We continue to obtain the dis-
junctive normal form.

(∗) ≡ (¬A∨¬B)∧ ((B∧¬C)∨ (A∧¬C)) [∨ u]

≡ (¬A∧ ((B∧¬C)∨ (A∧¬C)))∨

(¬B∧ ((B∧¬C)∨ (A∧¬C))) [∨ u]

≡ (¬A∧B∧¬C)∨ (¬A∧A∧¬C)∨

(¬B∧B∧¬C)∨ (¬B∧A∧¬C) [∨ u]

≡ (¬A∧B∧¬C)∨ (A∧¬B∧¬C).

d) P1∧P2 ↔ (P1 → P2)∨ (P2 → P3)

Solution. One can notice that the term on the right-hand side of the
equivalence is valid (check!), and to ease the task we can replace it
with ⊤.

P1∧P2 ↔⊤

≡ (P1∧P2 →⊤)∧ (⊤→ P1∧P2) [↔ e]

≡ (¬(P1∧P2)∨⊤)∧ (¬⊤∨ (P1∧P2)) [→ e]

≡ (¬P1∨¬P2∨⊤)∧ (⊥ ∨ P1)∧ (⊥∨ P2)[¬ s]

≡ P1∧P2.

This is both CNF and DNF.

5. Use semantic tableaux to prove that the rules used to find CNF/DNF of a
proposition maintain logical equivalence.

Solution. Use semantic tableuax to proof the validity of(α ↔ β) ↔ ((α →
β)∧ (β → α)), (α → β) ↔ (¬α∨β), α ↔¬¬α, etc.

6. Find CNFs for the following propositions both by applying the transforma-
tion rules and using semantic tableaux.

a) (P∧¬P)∨ (Q∧¬Q)

b) (P1∧¬P1)∨· · ·∨ (Pn ∧¬Pn)

Use semantic tableaux to prove that CNF obtained for a) is unsatisfiable.

Solution.

a)

(P∧¬P)∨ (Q∧¬Q)

≡ ((P∧¬P)∨Q)∧ ((P∧¬P)∨¬Q)

≡ (P∨Q)∧ (¬P∨Q)∧ (P∨¬Q)∧ (¬P∨¬Q)

Semantic tableaux is used similarly to 4. a).

b)

(P1∧¬P1)∨· · ·∨ (Pn ∧¬Pn)

≡ (P1∨· · ·∨Pn)∧ (¬P1∨P2∨· · ·∨Pn)∧· · ·∧ (¬P1∨· · ·∨¬Pn)

Propositionφ is unsatisfiable iff when starting from(T φ) all branches are
contradictory.



T ((P∨Q)∧ (¬P∨Q)∧ (P∨¬Q)∧ (¬P∨¬Q))

T (P∨Q)

T (¬P∨Q)

T (P∨¬Q)

T (¬P∨¬Q)

T (P)

T (¬P)

F(P)
⊗

T (Q)

T (P)

T (¬P)

F(P)
⊗

T (¬Q)

F(Q)
⊗

T (¬Q)

F(Q)
⊗

T (Q)

T (¬P)

F(P)

T (P)
⊗

T (¬Q)

F(Q)
⊗

T (Q)

T (¬P)

F(P)
⊗

T (¬Q)

F(Q)
⊗

7. Find a clause form for(A → ((A → A) → A)) → ((A → (A → A)) → (A →
A))

Solution. Remove implications.

(A → ((A → A) → A)) → ((A → (A → A)) → (A → A))
≡ ¬(A → ((A → A) → A)) ∨ ((A → (A → A)) → (A → A))
≡ ¬(¬A∨ ((A → A) → A)) ∨ ((¬A∨ (A → A)) → (A → A))
≡ ¬(¬A∨ (¬(¬A∨A)∨A)) ∨ (¬(¬A∨ (¬A∨A))∨ (¬A∨A))

Push negations in front of atomic propositions.

¬(¬A∨ (¬(¬A∨A)∨A)) ∨ (¬(¬A∨ (¬A∨A))∨ (¬A∨A))
≡ (¬¬A∧¬(¬(¬A∨A)∨A)) ∨ ((¬¬A∧¬(¬A∨A))∨ (¬A∨A))
≡ (A∧ (¬¬(¬A∨A)∧¬A)) ∨ ((A∧¬(¬A∨A))∨ (¬A∨A))
≡ (A∧ ((¬A∨A)∧¬A)) ∨ ((A∧ (A∧¬A))∨ (¬A∨A))

Use distributivity rules to push disjuctions inside of conjunctions.

(A∧ ((¬A∨A)∧¬A)) ∨ ((A∧ (A∧¬A))∨ (¬A∨A))
≡ (A∧ ((¬A∨A)∧¬A)) ∨ ((A∨ (¬A∨A))∧ ((A∧¬A)∨ (¬A∨A)))
≡ (A∧ ((¬A∨A)∧¬A)) ∨ ((A∨¬A∨A)∧ (A∨¬A∨A)∧ (¬A∨¬A∨A))

≡ (A∨ ((A∨¬A∨A)∧ (A∨¬A∨A)∧ (¬A∨¬A∨A)) ∧
(¬A∨A)∧¬A)∨ ((A∨¬A∨A)∧ (A∨¬A∨A)∧ (¬A∨¬A∨A))

≡ (A∨A∨¬A∨A)∧ (A∨A∨¬A∨A)∧ (A∨¬A∨¬A∨A) ∧
(¬A∨A∨A∨¬A∨A)∧ (¬A∨A∨A∨¬A∨A) ∧
(¬A∨A∨¬A∨¬A∨A)∧ (¬A∨A∨¬A∨A)∧ (¬A∨A∨¬A∨A) ∧
(¬A∨¬A∨¬A∨A)

When we eliminate the disjunctions that contain literal andits complement,
we notice that all the 9 clauses areeliminated. Thus the resulting set of
clauses is empty (/0). This should be the case, because the proposition is
valid (you can check this using, for example, semantic tableaux).

8. Consider the set of clauses:

S = {{A0,A1},{¬A0,¬A1},{A1,A2},{¬A1,¬A2}, . . . ,
{An−1,An},{¬An−1,¬An},{An,A0},{¬An,¬A0}}

Give truth assignmentA such thatA |= S.

Solution. Consider the two first clauses ofS. We can interpret them as
proposition(A0∨A1)∧ (¬A0∨¬A1). This proposition has modelsA1 =
{A0} andA2 = {A1}, that is, it models the exclusive-or operation (XOR).
Thus the set of clausesS is equivalent to proposition

(A0∨A1)∧ (A1∨A2)∧· · ·∧ (An∨A0).

Now, we consider the models of the above propostion for two values ofn.
Whenn = 1 the proposition is(A0∨A1)∧ (A1∨A0). If A0 is true, it implies
thatA1 has to be false. Now both conjuncts are satisfied. On the otherhand,
if A0 is false,A1 must be true. The models ofS are thus{A0} and{A1}.

Now, if n = 2, the proposition is of the form(A0∨A1)∧(A1∨A2)∧(A2∨A0).
If A0 is true, thenA1 must be false and furthermoreA2 has to be true. The
last XOR demands thatA0 is false ifA2 is true and because of this contra-
diction there is no model such thatA0 is true. Similar contradiction appears
if one assumes thatA0 is false. ThusS has no models forn = 2.

This can be generalized for alln. If n is odd,S has two models,

{A0,A2, . . . ,An−1}

and
{A1,A3, . . . ,An},

and if n is even,S has no models (prove the general case!).



9. Horn-clause is a clause that has exactly one positive literal. Let A1 andA2

be models for a set of Horn-clausesS. Show that alsoA = A1∩ A2 is a
model ofS.

Solution. Assume the opposite, that is,A 6|= S. Then there is a clause
{A,¬B1, . . . ,¬Bn} in S that is not satisfied. Thus{B1, . . . ,Bn} ⊆ A (that is,
A |= Bi for all 1≤ i ≤ n) andA 6∈ A (that is,A 6|= A). Based on the definition
of intersection{B1, . . . ,Bn} ⊆ A1 and{B1, . . . ,Bn} ⊆ A2. SinceA1 andA2

are models ofS, then alsoA ∈ A1 andA ∈ A2. This impliesA ∈ A by the
definition of intersection, a contradiction. ThusA |= S. �


