T-79.3001 Logic in computer science: foundations Spring 20
Exercise 10 ([NS, 1997], Predicate Logic, Chapters 6 — 7)
April 17-19, 2007

Solutions to demonstration problems

4. A directed graph consists of a set of nodels and a setlioécted egdes
between the nodes. Assume that nodes a represented withmisa, b, ...}
and edges with a binary predicd€éx, y) = “there is an edge from nodeto
nodey".

1. Define predicateR;(x,y) = “nodey is reachable from nodeusingn
edges”, fom=0,1,2,...,k. Represent the following graph with pre-
dicateK.

—

a b — ¢

—

2. Use semantic tableaux to show that
3Ix(Ra2(x,X) ARz(x,€))

is a logical consequence of the representation of the graghlefini-
tions of predicate®, andR3

Solution.

a) Define predicateR,(x,y) as follows:

VXRo(X, X)
VXvYZ(Ro(x,y) AK(Y,2) — Ri(X,2))
XvYvZ(Ri(x,y) AK(Y;2) = Ra(x,2))

VXVWZ(Rk—l(Xv y) A K(y~ Z) - Rk(X7 Z))

The graph

—

a b — ¢
-

can be represented Kga, b), K(b,a) andK(b,c).

b) 1. T(VXRo(X, X))
2. T(VxvWz(Ro(x,Y) AK(Y,2) — Ri(%,2)))
3. T(YXvW2z(Ry(X,y) AK(Y,2) — Ra(X,2)))

4. T (vx9yz(Ra(x.Y) A K (.2) — Ra(x,2)))

8. F(3IX(Ra(x,x) ARa(x,C)))

9. F(Ra(b, b)/\:Rg(b,c)), 8. x/b

10. T(Ro(b,b) AK(b,a) — Ry(b,a)), 2. x/b,y/b,z/a

TN

11 F(Ro(b,b) AK(b,a)), 10. 11 T(Ry(b,a)), 10.
12 F(Ro(b.m. FF(K(b.a)), 11

13 T(Ro!b,b)), 1
®

The subtree from node 11 continues in the next page.



5. We represent binary trees using a binary funcsdimternal nodes) and a

= unary functionl (leaf nodes). Thus the representation of the upper tree is
< 89 the terms(s(I(c),1(a)),1(b)).
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The finished tableau is contradictory and the claim holds.



TYXPK(1(x),1(x))

= = 6. Quantifier3!x is used to denote “there is only ore Sentenced!x@(x) can
2 =3 L be represented as
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The semantic tableau:

1 T (3K (X) AVXYY(K(X) AK(Y) = x=Y))
2. T(¥x(JI(
3. T(Wx(K(

< —

) — K(x)))
) —I(X)))
4. F(IxI(X) AVXYY(J(X) AI(y) = X=1Y))

x

5. T(3xK(x)), 1.
6. T(VXYY(K(X) AK(y) = x=Y))
7. F(3xI(x)) 7. F(YXYY(I(X) AJ(Y) — x=Y))
8.T(K(a)), 5.x/a 8. F(vy(J(b)AJ(y) = b=Yy)), 7.x/b
9.F(J(a)), 7. x/a 9. F(J(b)AJ(c) —b=c), 8.y/c
(

10. T(K(a) — J(a)), 3 10. T(J(b) A J(c))
LWFK() 11T 0@) 11 F(b=c)

13

15. F(K(b) AK(c)) 15T(b=0)
/ \
16 FiK(b)) 1s Fl(K(c)
17. T(J(b) — K(b)),2. x/b 17.T(J(c) — K(c)),3.x/c
PN

18 FOb)  18TKD) 18F(()  18T(K(E)



