T-79.3001 Logic in computer science: foundations Exercise 2 (propositional logic 2.1 – 3.5) January 30–February 1, 2007

Spring 2007

Tutorial problems

- Give definitions for the connectives in propositional logic using conjunction
 (∧) and negation (¬).
- **2.** a) Let $\mathcal{A} = \{A, C\}$ be a truth assignment. Find the truth value of

 $C \land (A \leftrightarrow B) \to ((A \lor \neg B) \land (B \lor \neg A) \to C)$

by using (i) truth tables and (ii) the definition of truth values. What can be said about the validity, satisfiability, and unsatisfiability of the proposition?

- b) Apply truth tables to see whether $\{A \rightarrow B, B \rightarrow C\} \models A \rightarrow C$ holds.
- **3.** Let \mathcal{A} be a truth assignment. Prove by induction that for all propositional statements ϕ , either $\mathcal{A} \models \phi$ or $\mathcal{A} \not\models \phi$.

Demonstration problems

- 4. Give definitions for the connectives in propositional logic using
 - a) the proposition that is always false (\perp) and implication (\rightarrow) , and
 - b) the Sheffer stroke.
- **5.** List all possible binary connectives (16 in total) and give their definitions using the basic connectives in propositional logic.
- **6.** Let $\mathcal{A}_1 \subseteq \mathcal{P}$ and $\mathcal{A}_2 \subseteq \mathcal{P}$ be truth assignments and $\phi \in \mathcal{L}$ a proposition. Show that if $\mathcal{A}_1 \cap At(\phi) = \mathcal{A}_2 \cap At(\phi)$, then $\mathcal{A}_1 \models \phi \iff \mathcal{A}_2 \models \phi$.
- 7. Let $\mathcal{A} = \emptyset$ be a truth assignment. Find the truth value of

$$(\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)$$

by using

- a) the truth table and
- b) the definition of truth values.

- **8.** An engineer designed a specification for two traffic light posts positioned in the intersection of two one-way streets:
 - (i) Both the light posts have a green, a yellow and a red light. Exactly one of the lights in each light post is lit at all times.
 - (ii) Both green lights are not lit at the same time.
 - (iii) If one lamp post has the red light on, then the other has either the green or the yellow light on.
 - a) Formalize the above requirements as a set of propositional statements.
 - b) Construct a truth table for the set of statements.
 - c) Give (i) a model for the set of statements, and (ii) a truth assignment such that the set of statements is not satisfied.
 - d) Are the requirements complete enough for a real life situation?
- 9. Apply truth tables to see whether the following claims hold.
 - a) $(A \to B) \to ((B \to C) \to (A \to C))$ is valid.
 - b) $\neg((A \rightarrow B) \rightarrow ((\neg A \rightarrow B) \rightarrow B))$ is unsatisfiable.
 - c) $A \leftrightarrow B$ and $\neg (A \leftrightarrow \neg B)$ are logically equivalent.
 - d) $\{(A \land B) \lor (C \land A), (A \land B) \lor \neg B\} \models A \lor (C \land \neg B).$