
Presentation contents

• Node entities in NS2
• Emulating radio signals propagation
• Briefly mobility

Wireless multi-hop networks
• How is the radio signals propagation modeled
during the simulation ?



Mobile nodes in NS2



Mobile node (1)
• A mobile node is a compound object:

– the node object itself (C++)
/ns/mobilenode.{cc,h} & node.{cc,h}

– the network components within the mobile node
(OTCL)
/ns/tcl/lib/ns-mobilenode.tcl

• An additional set of modules implements, in
C++, the routing agents (protocols) for
mobile networking:
/ns/tcl/mobiliy/dsdv.{cc,h}
dsr, tora, and aodv are also implemented



Mobile node (2) - the node obj
• A mobile node is a basic node

with added functionalities for:
– moving

• Furthermore, it communicates
via a wireless channel. Hence,
it does not really have any list
of links to which is connected
to.

• 2 ways of creating nodes
movement.
(briefly explained later)



Mobile node (3)
• We are solely looking at the

bottom part of a more
complex stack. Radio
Signals Propagation
happens just over the
channel...

• The depicted network stack
is created, and plumbed for
each mobile node at its born
time with an OTCL routine.

• The routing agent
mentioned earlier, resides
on the top of the shown
stack.



Mobile node (4) - tcl configuration
• Two possible API to create a mobile node with certain

feautures:
– Old - creates a default mobile node object. We are only allowed to

specify the routing protocol: ($rp)
     set mnode [$rp-create-mobile-node $id]

– New - we can specify a more exhaustive set of features to be set:
$ns_ node-config -adhocRouting $val(adhocRouting)

-llType $val(ll) \
-macType $val(mac) \ ;# Either 802.11 or TDMA
-ifqType $val(ifq) \ ;# priority

 -ifqLen $val(ifqlen) \ ;# length
 -antType $val(ant) \   ;# MultiDir/ Omni

-propType $val(prop) \ ;# RPM
-phyType $val(netif) \ ;# WirelessPhy

   -channeltype $val(chan) \
-channel $chan \
-topoInstance $topo \
-agentTrace ON \
-routerTrace ON \
-macTrace ON \
-movementTrace OFF \

set node_($j) [$ns_  node]   ;# Real creation in memory



Radio Propagation Models



 Radio signals propagation
• NS assumes that in wireless, multihop

networks each packet arrives at the receiver
side whenever the sender got the channel
IDLE for the needed time t=ttr+tpr. This
regardless the distance between the nodes.

• Hence, it is a receiver’s duty to investigate
whether or not the packet must climb the
stack toward the application layer.



Receiver side stack
• When a pck is received, it is

computed a prediction for
the received signal power:
  PRec= fpm(meta_data)

• The destiny of the “received”
pck can alternatively be:
– going up through the stack

 PRec > RXthreshold

– be dropped and traced as such
CSthreshold < PRec < RXthreshold

– be dropped without tracing it
 PRec < CSthreshold



Signals interference problem
• Interference is assumed when:

– PRec > CSthreshold

• Multiple transmissions toward the same node:
– NS assumes that if a packets PB arrives at a node N when it is correctly

receiving another packet PA, their reception is ONLY compromised if
Prec(PB)>CSthreshold

• This is correct as long as we are sure that not more than two
packets can arrive at the same node.
In case that two pcks PB and PC arrive (with a weak power) while N is
correctly receiving PA, ns2 thinks that PA reception is not compromised when:

-Prec(PB)<CSthreshold
-Prec(PC)<CSthreshold
-Prec(PB)+Prec(PC) > CSthreshold 

• It should compromise the reception of PA but it doesn’t !! Other
simulators as Opnet, Qualnet, Glomosim correctly address the
situation



Setting RXthreshold
• An external application (/ns/indep-utils/propagation/ threshold.cc)

is provided with the ns source files. It computes the value for the
receiving threshold. It take as input:
– Pr <transmitted-power>
– Gt <transmit-antenna-gain>
– Gr <receive-antenna-gain>
– L <system-loss-coefficient>
– p <ratio-prop-model>
– d <distance>

• It gives in output the RX_thresh value to be set if we want to
have correct reception from nodes transmitting at power Pr
within a round area of ray d.
            Phy/WirelessPhy set RXThresh_ <value>

• RXthreshold is inverse proportional to d



Free space PM
• It predicts the radio signals received power on the

direct path joining S/R considering:
– Pt the power transmitted
– Gt, Gr repectively the gain of the transmitter and receiver antennas.

(their value is 1 by default)
– λ the wave length
– d the distance between S/R
– L >= 1 a network pathloss coefficient (1 by default)

•  The formula is:

Prec-FS(d) = )4( 2

2

dL
GGP rtt

π
λ

• $ns_ node-config -propType Propagation/FreeSpace



Two ray ground PM
• In the reality, a receiver hears a received power which is

the sum of the signal on the direct path and on the ground
reflection path. TwoRay attempts to model this fact:








 <
=

−

− Else
L

difd
d

d
hhGGP

dp
p

rtRtt

trheshFSr

trgr
4

)()(
)(

• dthresh is the distance such that: pr-FS(d) = pr-trg(d)

λ
π hhd rt

thresh

4
=

• $ns_ node-config -propType Propagation/TwoRayGround



Shadowing PM
• It’s a more sophisticated model. It represents the fact

that the received power at a certain distance is a
random variable due to multipath effect (fading effect):

X

FSrecSWR d
d

dpp d 10
0

)()(
0 








−−

=

β

Where:

[ ]{ }),0()(|,:)( 2σNxPxxX =+∞∞−∈

• $ns_ node-config -propType Propagation/Shadowing
Path loss    , Std dev    , and d0 must be previously setσβ



Briefly mobility



Nodes movement (1)
• Mobiles move within a certain topology (width, and height must

be specified)
set topo [new Topography]
$topo load_flatgrid $width $height

a topography instance must be passed to the method which
creates the mobile node:  -topoInstance $topo \

• Nodes’ initial location and movements directives are usually
specified in a separated “scenario file”
  $node set X_ <x0> ;# initial abscissa (0 by default)
 $node set Y_ <y0> ;# initial ordinate (0 by default)
 $ns at $time $node setdest <x1> <y1> <speed[m/s]>

• Nodes position is normally updated whenever it is needed to be
known. Alternatively it can be regularly updated as :
proc update_position { dt } {

$node log-movement
$ns_ at [expr [$ns_ now]+dt] "update_position $n $dt”

}



Nodes movement (2)
• Scenario files, to obtain a motion that resembles certain mobility

models, are usually generated by self-written scripts.
• The network simulator provides an external application

(/ns/indep-utils/cmu-scen-gen/setdest/setdest.cc) to generate
movement directives according to RWP:
./setdest -n <num_of_nodes> -p <max_pause_t> -s <maxspeed>
-t <simtime> -x <maxx> -y <maxy> > <out-scenario-file>

it assumes the nodes to be named as node_(index)

• Instead of having a scenario file, we could just be
happy to instruct the simulator to make the nodes move
randomly without giving it any further instructions:

$node random-motion 1 ;# if we were using a scenario file we should

      ;# have set it to 0 instead



Position updating

• Significant attributes at C++ level for a mobile node are:
PosX, PosY, [PosZ]
DestX, DestY, [DestZ]
DirX, DirY, [DirZ]
ArrivalTime
PreviusUpdateTime

• the position attributes and the PreviousUpdateTime are assigned
every time that an update event occures.

• The destination, and the direction attributes as well as the
ArrivalTime are assigned whenever the setdest method is called



Thank you!

Any question?
Write to:   Stefano Marinoni 

  marstefy@tcs.hut.fi
Office:      T-B235 lab for theoretical CS


	Presentation contents
	Mobile nodes in NS2
	Mobile node (1)
	Mobile node (2) - the node obj
	Mobile node (3)
	Mobile node (4) - tcl configuration
	Radio Propagation Models
	Radio signals propagation
	Receiver side stack
	Signals interference problem
	Setting RXthreshold
	Free space PM
	Two ray ground PM
	Shadowing PM
	Briefly mobility
	Nodes movement (1)
	Nodes movement (2)
	Position updating

