
Derandomization in Cryptology

T-79.300 Postgraduate Course in Theoretical Computer Science

Seminar talk

Emilia Käsper

1



Overview

• Pseudorandom generators fooling nondeterministic circuits

• Hitting set generators as a weaker notion of pseudorandom generators

• Application 1: A witness indistinguishable one-message proof system

• Application 2: A noninteractive bit commitment scheme
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Interactive proof systems

Let L be aNP-language. The (probabilistic polynomial-time) prover P

wants to prove to the (PPT) verifier V the membership ofx ∈ L. We require

• completeness: the prover (almost) never fails to prove the membership

of valid inputs;

• soundness: the verifier (almost) never accepts invalid inputs.
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Secure proof systems

Let W be a witness relation forL, i.e.

L = L(W ) = {x|∃w (x, w) ∈W}.

Let W (x) = {w|(x, w) ∈W} be thewitness setof x and call aw ∈W (x)

awitnessfor x.

Zero-knowledge: prover, knowing a witness forx ∈ L can convince the

verifier to accept without revealing no information whatsoever except the

fact thatx ∈ L.

In particular, the verifier should learn nothing whatsoeverabout the witness.
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ZK in cryptography

• Assume that the verifier is an adversary trying to gain knowledge.

• A dishonest verifier may compute its messages, using additional input

from e.g. previous stages of the protocol.

Auxiliary-input zero-knowledge: no information is revealed, even if the

verifier can use auxiliary input (but remains polynomial-time in the

common input).
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Can we remove interaction?

• Noninteractive ZK proofs require a shared random string selected by a

trusted third party.

• From a truly noninteractive proof system, the verifier always gains the

ability to prove the same statement to others.

• For auxiliary-input zero-knowledge, even two-message proofs are

impossible.
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Witness indistinguishability

• If there are two witnesses forx ∈ L, a proof system iswitness
indistinguishable if no polynomial time verifier — possibly

nonuniform and using auxiliary input — can distinguish which of the

two witnesses is being used by the prover.

• The verifier should not be able to distinguish, even if he knows both

witnesses.

• Witness indistinguishability is preserved under paralleland concurrent

composition of protocols (zero knowledge is not).
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The goal

An NP Proof System

• consists of a single message from P to V;

• has a deterministic verifier; and

• satisfies perfect completeness and perfect soundness.

Trivial NP Proof: send the witness to the verifier.

The goal: an NP-proof system that iswitness indistinguishable.
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Preliminaries
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Pseudorandom generators

• G : {0, 1}l → {0, 1}m is a(s, ε)-pseudorandom generator against
circuits if for all circuits C : {0, 1}m → {0, 1} of size at mosts, it

holds that

|Pr[C(G(Ul)) = 1]− Pr[C(Um) = 1]| < ε.

• Informally, we say that the generatorfoolscircuits of sizes.
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Nondeterministic circuits

• A nondeterministic Boolean circuitC(x, y) is a circuit that takesx as

its primary input andy as a witness. For eachx, we defineC(x) = 1 if

there exists a witnessy such thatC(x, y) = 1.

• A co-nondeterministic Boolean circuitC(x, y) is a circuit that takes

x as its primary input andy as a witness. For eachx, we define

C(x) = 0 if there exists a witnessy such thatC(x, y) = 0.
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Blum-Micali-Yao type generators

• A functionG =
⋃

m Gm : {0, 1}l → {0, 1}m is aBMY-type
generator, if G is computable in time poly(l) and for every constantc,

Gm is a(mc, 1
mc

)-pseudorandom generator for all sufficiently largem.

• In BMY-type generators, the adversarial circuit is allowedgreater

running time than the generator.

• Hence, a BMY-type generator cannot fool nondeterministic circuits.
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Nisan-Widgerson type generators

• A functionG =
⋃

m Gm : {0, 1}l → {0, 1}m is aNW-type generator,
if G is computable in time2O(l) andGm is a(m2, 1

m2 )-pseudorandom

generator for allm.

• In BMY-type generators, the generator is allowed greater running time

than the adversarial circuit.

• NW -type generators can fool nondeterministic circuits.
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Hitting set generators

• A hitting set generator outputs a set that intersects every dense set

recognizable by a small circuit. Formally,

• H is anε-hitting set generator against circuits, if for every circuit

C : {0, 1}m → {0, 1} of size at mosts, the following holds. If

Pr[C(Um) = 1] > ε then there existsy ∈ H(1m, 1s) such that

C(y) = 1.

• H is efficientif its running time is polynomial inm ands.
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HSG-s vs NW-type generators

• A pseudorandom generatorG : {0, 1}l → {0, 1}m fooling circuits of

sizes induces a HSG, by taking the set of outputs over all seeds.

• The obtained HSG is efficient, ifG is computable in time poly(s, m)

and has logaritmic seed lengthl = O(log m + log s).

• HSG-s are allowed to run in greater time than the fooled circuits, thus

they correspond to NW-type generators.
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HSG-s vs NW-type generators

• If E has a function of circuit complexity2Ω(n), then there exists a

NW-type generator with logarithmic seed length (and thus polynomial

running time).

• If E has a function of nondeterministic circuit complexity2Ω(n), then

there exists an efficient12 -HSG against co-nondeterministic circuits.

• A similar result has been obtained for pseudorandom generators, but

we are satisfied with a HSG.
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End of preliminaries
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Once again: the goal

An NP Proof System

• consists of a single message from P to V;

• has a deterministic verifier; and

• satisfies perfect completeness and perfect soundness.

Trivial NP Proof: send the witness to the verifier.

The goal: an NP-proof system that iswitness indistinguishable.
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Noninteractive zero-knowledge

• Doable assuming trapdoor permutations

• Requires a shared random string

• How to “generate” the random stringδ?

• Let verifier choose a stringB — might harm witness protection.

• Let prover chooseC and setδ = B ⊕ C — might violate soundness.

• Solution: balance both ideas
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Protocol: a ZAP

First round : V → P : The verifier sends to the proverm random strings

B1, . . . , Bm. Denote this message byr.

Second round: P → V : The prover chooses a random stringC, defines

δj = Bj ⊕ C and sends to verifierm noninteractive proofs. Denote this

message byπ.

Final check: Verifier accepts if all proofs result in acceptance.
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Properties of ZAP

The ZAP protocol is

• complete;

• sound;

• witness indistinguishable.

Note that at this point we don’t require perfect soundness.
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The construction

• Say thatr is sound with respect tox /∈ L if there is no prover message

π such that(x, r, π) is accepting.

• For everyx /∈ L, there exists a co-nondeterministic circuitCx of size

p(n) < q(n)2 that outputs1 iff r is sound with respect tox (whereq(n)

is the running time of the honest verifier).

• Due to statistical soundness of the ZAP scheme, for everyx /∈ L, the

probability thatr is sound is larger than12 .

• Equivalently,Pr[Cx(U|r|) = 1] > 1
2 .

• Now we can use the HSG to hit a sound random stringr, whenever

x /∈ L.
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The protocol

Prover’s message

1. Compute the hitting set(r1, . . . , rm).

2. Computem responsesπi to verifier’s messagesri in a ZAP.

3. Send(π1, . . . , πm) to verifier.

Verifier’s test

1. Compute the hitting set(r1, . . . , rm).

2. Run the ZAP verifier on prover’s messages.

3. Accept if the ZAP verifier accepts all messages.
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Properties of the protocol

The protocol is

• perfectly(?) complete;

• perfectly sound — we are guaranteed to hit a soundr for anyx /∈ L.

• witness indistinguishable — this property is preserved under parallel

composition.
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The main result

Assume that there exists an efficient1
2 -HSG against co-nondeterministic

circuits and that trapdoor permutations exist. Then every language inNP

has a witness-indistinguishableNP proof system.

Note that the result can be restated, assuming the existenceof NIZK

systems (under the assumption of a shared random string) instead of the

existence of trapdoor permutations.

25



Bit commitment schemes

First step: The sender gives the receiver a commitment to a secret bitb.

Second step:The sender decommits the bitb by revealing a secret key.

We require

• hiding: the commitment without the key must not reveal any

information aboutb;

• binding: the sender is not able to decommit to a different bitb.
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Noninteractive bit commitment schemes

• There exists an interactive bit commitment scheme based on any

one-way function.

• There exists a noninteractive bit commitment scheme based on any

one-to-oneone-way function.

• Can we relax the security requirements?
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Interactive bit commitment scheme

• Let G : {0, 1}k → {0, 1}3k be a BMY-type pseudorandom generator

computable in timekd for some constantd.

• Such a generator can be constructed based on any one-way function.

• An interactive bit commitment scheme is given based on this generator.
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Interactive bit commitment scheme

Commitment stage

1. Receiver’s stepSelect a randomr ← {0, 1}3k and sendr to sender.

2. Sender’s stepSelect a randoms← {0, 1}k. If b = 0, sendα = G(s)

to receiver. Else, ifb = 1, sendα = G(s)⊕ r to receiver.

Decommitment stageSender revealss andb. Receiver accepts ifb = 0 and

α = G(s), or b = 1 andα = G(s)⊕ r.
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Derandomizing the scheme

• Define a stringr ∈ {0, 1}3k to begoodfor G if for all s, s′ ∈ {0, 1}k, it

holds thatG(s) 6= G(s′)⊕ r.

• As in the case of ZAP, the receiver does not need to send a random

string; it is sufficient to send a “good” string.

• The probability thatr is good is very high (due to binding property).
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Derandomizing the scheme

• Good strings can be recognized by a polynomial-time

co-nondeterministic uniform algorithm (running in time3kd).

• If E has a function of nondeterministic circuit complexity2Ω(n), then

there exists an efficient12 -HSG against co-nondeterministic uniform

algorithms.

• We can use the HSG to always hit a good random string.
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Noninteractive bit commitment scheme

Commitment stage

1. The sender computes the hitting set(r1, . . . , rm).

2. The sender choosesm stringss1, . . . , sm at random.

3. If b = 0, the sender sendsα = (G(s1), . . . , G(sm)). Else, ifb = 1, the

sender sendsα = G(s1)⊕ r1 . . . , G(sm)⊕ rm to receiver.

Decommitment stage

1. Sender revealsb and(s1, . . . , sm).

2. Receiver accepts ifb = 0 andα = (G(s1), . . . , G(sm)), or b = 1 and

α = G(s1)⊕ r1 . . . , G(sm)⊕ rm.
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The main result

Assume that there exists an efficient1
2 -HSG against co-nondeterministic

uniform algorithms and that one-way functions exist. Then there exists a

noninteractive bit commitment scheme.
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Conclusions

• The presented WI NP-proof is the first known noninteractive proof

system forNP that satisfies a secrecy property.

• The presented bit commitment scheme relaxes underlying assumptions

from previously known noninteractive bit commitment schemes: the

existence ofanyone-way function is now required.
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