Derandomization in Cryptology

T-79.300 Postgraduate Course in Theoretical Computen&eie
Seminar talk

Emilia Kasper




Overview

Pseudorandom generators fooling nondeterministic ¢gculi
Hitting set generators as a weaker notion of pseudorandoergtors
Application 1: A witness indistinguishable one-messagmpsystem

Application 2: A noninteractive bit commitment scheme




Interactive proof systems
Let L be aNP-language. The (probabilistic polynomial-time) prover P

wants to prove to the (PPT) verifier V the membership @ L. We require

e completenessthe prover (almost) never fails to prove the membersh
of valid inputs;

e soundnessthe verifier (almost) never accepts invalid inputs.




Secure proof systems

Let W be a withess relation fak, I.e.
L=LW)={x3w (z,w) € W}.

Let W (x) = {w|(x,w) € W} be thewitness sebf = and call aw € W (x)
awitnesdsfor .

Zero-knowledge prover, knowing a witness far € L can convince the
verifier to accept without revealing no information whatsgreexcept the
fact thatx € L.

In particular, the verifier should learn nothing whatsoesout the witness.




ZK In cryptography

e Assume that the verifier is an adversary trying to gain kndgge

e A dishonest verifier may compute its messages, using additinput
from e.g. previous stages of the protocol.

Auxiliary-input zero-knowledge: no information is revealed, even if the
verifier can use auxiliary input (but remains polynomiahiin the
common input).




Can we remove interaction?

e Noninteractive ZK proofs require a shared random stringcted by a
trusted third party.

e From a truly noninteractive proof system, the verifier als/ggins the
ability to prove the same statement to others.

e For auxiliary-input zero-knowledge, even two-messag®fsrare
Impossible.




Witness indistinguishability

e If there are two witnesses far € L, a proof system igvithess
indistinguishable if no polynomial time verifier — possibly
nonuniform and using auxiliary input — can distinguish what the
two witnesses is being used by the prover.

e The verifier should not be able to distinguish, even if he knbath
witnesses.

e Witness indistinguishability is preserved under paralall concurrent
composition of protocols (zero knowledge is not).




The goal

An NP Proof System

e consists of a single message from P to V,
e has a deterministic verifier; and
e satisfies perfect completeness and perfect soundness.

Trivial NP Proof: send the withess to the verifier.

The goal: an NP-proof system that witness indistinguishable




Preliminaries




Pseudorandom generators

o G:{0,1} — {0,1}™is a(s, €)-pseudorandom generator against
circuits if for all circuits C' : {0,1}™ — {0, 1} of size at mosk, it
holds that

|PriC(G(U1) = 1] = Pr{C(Un) = 1]| <e.

¢ Informally, we say that the generatimols circuits of sizes.

10




Nondeterministic circuits

e A nondeterministic Boolean circuitC(x, y) is a circuit that takes as
its primary input andy as a witness. For eaah we defineC'(z) = 1 if
there exists a withegssuch thaC'(z, y) = 1.

e A co-nondeterministic Boolean circuitC(x, y) is a circuit that takes
x as its primary input ang as a witness. For eaah we define
C(x) = 0 if there exists a witnesg such thatC'(x, y) = 0.
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Blum-Micali-Yao type generators

e AfunctionG =J,, G, : {0,1}} — {0,1}™ is aBMY-type
generator, if G is computable in time poly) and for every constarat
G, is a(m®, )-pseudorandom generator for all sufficiently large

m¢c

e In BMY-type generators, the adversarial circuit is allovggdater
running time than the generator.

e Hence, a BMY-type generator cannot fool nondeterministmudts.
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Nisan-Widgerson type generators

e AfunctionG =J,_ G, : {0,1}} — {0,1}™ is aNW-type generator,
if G is computable in time®®) andG,,, is a(m?, =5 )-pseudorandom
generator for alin.

e In BMY-type generators, the generator is allowed greatening time
than the adversarial circuit.

e NW-type generators can fool nondeterministic circuits.
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Hitting set generators

e A hitting set generator outputs a set that intersects evengel set
recognizable by a small circuit. Formally,

e H is ane-hitting set generator against circuits, if for every citcu
C:{0,1}" — {0, 1} of size at most, the following holds. If
Pr|C(U,,) = 1] > e then there existg € H(1™,1°) such that
Cly) =1.

e H is efficientif its running time is polynomial inm ands.
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HSG-s vs NW-type generators

e A pseudorandom generat6r: {0, 1} — {0, 1}™ fooling circuits of
sizes induces a HSG, by taking the set of outputs over all seeds.

e The obtained HSG is efficient, @ is computable in time poly, m)
and has logaritmic seed lengte= O(log m + log s).

e HSG-s are allowed to run in greater time than the fooled dscthus
they correspond to NW-type generators.
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HSG-s vs NW-type generators

e If E has a function of circuit complexit¥**("), then there exists a
NW-type generator with logarithmic seed length (and thugnmmmial
running time).

e If E has a function of nondeterministic circuit complex@y(™), then
there exists an efficien}t-HSG against co-nondeterministic circuits.

e A similar result has been obtained for pseudorandom gesrsrdiut
we are satisfied with a HSG.
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End of preliminaries
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Once again: the goal

An NP Proof System

e consists of a single message from P to V,
e has a deterministic verifier; and
e satisfies perfect completeness and perfect soundness.

Trivial NP Proof: send the withess to the verifier.

The goal: an NP-proof system that witness indistinguishable
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Noninteractive zero-knowledge

Doable assuming trapdoor permutations

Requires a shared random string

How to “generate” the random strirg

Let verifier choose a strinf — might harm witness protection.

Let prover choos€’ and set = B & C' — might violate soundness.

Solution: balance both ideas

19




Protocol: a ZAP

First round: V' — P: The verifier sends to the prover random strings
Bi, ..., B,,. Denote this message by

Second round P — V' The prover chooses a random strifdigdefines
0; = B; ® C and sends to verifier, noninteractive proofs. Denote this
message by.

Final check Verifier accepts if all proofs result in acceptance.
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Properties of ZAP

The ZAP protocol is

e complete;
e sound;
e Wwitness indistinguishable.

Note that at this point we don’t require perfect soundness.
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The construction

Say that is sound with respect to ¢ L if there is no prover message
7 such thaf(z, r, 7) is accepting.

For everyx ¢ L, there exists a co-nondeterministic circtiif of size
p(n) < q(n)? that outputsl iff r is sound with respect te (wheregq(n)
IS the running time of the honest verifier).

Due to statistical soundness of the ZAP scheme, for evetyl, the
probability that is sound is larger tha#.

Equivalently,Pr[C,(U}) = 1] > 3.

Now we can use the HSG to hit a sound random stringhenever
x ¢ L.
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The protocol

Prover’'s message
1. Compute the hitting sét'1, ..., 7).
2. Computen responseg; to verifier's messages in a ZAP.
3. Send(my, ..., ) to verifier.
Verifier’s test
1. Compute the hitting sét'1, ..., 7).
2. Run the ZAP verifier on prover's messages.

3. Accept if the ZAP verifier accepts all messages.
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Properties of the protocol

The protocol is

e perfectly(?) complete;
e perfectly sound — we are guaranteed to hit a soufat anyx ¢ L.

e witness indistinguishable — this property is preservedenmarallel
composition.
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The main result

Assume that there exists an efficiebHSG against co-nondeterministic
circuits and that trapdoor permutations exist. Then ewvangliage irNP
has a witness-indistinguishaldiNP proof system.

Note that the result can be restated, assuming the existéih&K
systems (under the assumption of a shared random strirtgaahsf the
existence of trapdoor permutations.
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Bit commitment schemes

First step: The sender gives the receiver a commitment to a secrét bit

Second stepThe sender decommits the biby revealing a secret key.

We require

¢ hiding: the commitment without the key must not reveal any
information aboub;

e binding: the sender is not able to decommit to a differentbit
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Noninteractive bit commitment schemes

e There exists an interactive bit commitment scheme basedyn a
one-way function.

e There exists a noninteractive bit commitment scheme baseahy
one-to-oneone-way function.

e Can we relax the security requirements?
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Interactive bit commitment scheme

o LetG: {0,1}* — {0,1}3* be a BMY-type pseudorandom generator
computable in timé&? for some constant.

e Such a generator can be constructed based on any one-wawpfunc

e An interactive bit commitment scheme is given based on thregator.
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Interactive bit commitment scheme

Commitment stage

1. Receiver’s stepSelect a random « {0, 1}3* and send to sender.

2. Sender’s stepSelect a randona < {0,1}%. If b = 0, senda = G(s)
to receiver. Else, ib = 1, senda = G(s) @ r to receiver.

Decommitment stageSender reveals andb. Receiver accepts tf= 0 and
a=G(s),orb=1anda = G(s) Dr.
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Derandomizing the scheme
e Define a string- € {0, 1}3* to begoodfor G if for all s, s’ € {0,1}*, it
holds that(s) # G(s') & r.

e As in the case of ZAP, the receiver does not need to send amando
string; it is sufficient to send a “good” string.

e The probability that is good is very high (due to binding property).
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Derandomizing the scheme

e (Good strings can be recognized by a polynomial-time
co-nondeterministic uniform algorithm (running in tirgg?).

e If E has a function of nondeterministic circuit complex@y(™), then
there exists an eﬁ‘icie@-HSG against co-nondeterministic uniform
algorithms.

e We can use the HSG to always hit a good random string.
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Noninteractive bit commitment scheme

Commitment stage

1. The sender computes the hitting &at, ..., 7,,).
2. The sender chooses stringssy, . .., s,, at random.

3. If b =0, the sender sends= (G(s1),...,G(sm)). Else, ifb =1, the
sender sends = G(s1) @ r1...,G(sm) ® ry tO receiver.

Decommitment stage
1. Sender revealsand(sy, ..., sm).

2. Receiver acceptsiif= 0 anda = (G(s1),...,G(sm)), 0rb =1 and
a=G(s1)Dr1...,G(Sm) D rm.
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The main result

Assume that there exists an eﬂ‘icie}*HSG against co-nondeterministic
uniform algorithms and that one-way functions exist. THeré exists a
noninteractive bit commitment scheme.

33




Conclusions

e The presented WI NP-proof is the first known noninteractiraop
system fofNP that satisfies a secrecy property.

e The presented bit commitment scheme relaxes underlyingrassons
from previously known noninteractive bit commitment sclesmthe
existence ohnyone-way function is now required.
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