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Introduction

Recall the card game between Alice and Bob. There is a deck of N

cards. Alice randomly marks (1− ε)N cards with 0 < ε < 1. Bob
must select at most d cards. If Bob picks a card marked by Alice
then Bob wins, otherwise Alice wins.

This idea was the foundation for using dispersers (incl. extractors)
to deal with insufficient randomness.

The model is too general for derandomization however. The idea
behind hitting set generators is to limit Alices choices to a
restricted set. Bob must now try to produce picks that will always
cover at least one card in any of Alices choices.
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Hitting Sets

Definition Let C be a set system over a finite universe. A
(1− ε)− hitting set for C is a set H s.t.
∀S ∈ C, |S|/|C| ≥ 1− ε: H ∩ S 6= ∅.
Definition A (1− ε)− hitting set generator for C is a deterministic
algorithm which on input r outputs (1− ε)− hitting set
Hr ⊆ {0, 1}r for C.
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ONE-SIDED CIRCUIT-ACCEPTANCE PROBABILITY
ESTIMATION

Let C : {0, 1}r → {0, 1} be a Boolean circuit of size r that is
guaranteed (“promised”) that either Pr[C(x) = 1] = 0 or
Pr[C(x) = 1] ≥ 1/2 when x ∈ {0, 1}r is random.

The CIRCUIT-ACCEPTANCE PROBABILITY ESTIMATION
problem is to determine if Pr[C(x) = 1] ≥ 1/2.

This problem is pRP-complete. Essentially a circuit accepting a
language using randomness can be transformed into a circuit like C

described above.
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Derandomization

Lemma If there exists a 1/2-hitting set generator for the sets
decided by circuits of size r running in time t(r), then
RP ⊆ TIME(t(nO(1))nO(1)).

Let us consider circuits C : {0, 1}r → {0, 1}. Let C be the set of
subsets of {0, 1}r recognized by C.

A derandomization of RP can be performed if one can construct
for arbitrary C a 1/2-hitting set over C. Note that because we are
considering RP then it is sufficient to accept with a 1/2-probability
of error (hence the 1/2-hitting set).
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STRONG ONE-SIDED CIRCUIT-ACCEPTANCE
PROBABILITY ESTIMATION

Let ε > 0. Let C : {0, 1}n → {0, 1} be a Boolean circuit of size nq.
Let it be guaranteed that either Pr[C(x) = 1] = 0 or
Pr[C(x) = 1] ≥ 1− 2−n+ne

for a random x ∈ {0, 1}n.

The (q, ε)- STRONG ONE-SIDED CIRCUIT ACCEPTANCE
PROBABILITY ESTIMATION problem is to decide if
Pr[C(x) = 1] ≥ 1− 2−n+ne

for a random x ∈ {0, 1}n.
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Lemma For all ε > 0 there exists a constant q such that
(q, ε)-STRONG ONE-SIDED CIRCUIT ACCEPTANCE
PROBABILITY ESTIMATION (SOSCAPE) is complete for pRP.

SOSCAPE is in pRP because the ONE-SIDED
CIRCUIT-ACCEPTANCE PROBABILITY ESTIMATION
problem is. This is due to the behaviour of the inequality −n + ne

when n grows.

Let M be any randomized Turing-machine in pRP.

Construct a machine M ′ that requires R(n) > n random bits and
has error probability 2−R(n)+R(n)ε

using earlier results.

Convert M ′ to a circuit C that accepts as input x and random bits
R(|x|). Convert this circuit into a circuit Cx that builds x into the
circuit and takes only the randomness as input.

This circuit has size R(|x|)q for some constant q. The size of q

depends on the size of M which depends on ε.
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Lemma For all ε > 0 there exists q ≥ 1 s.t. if a
(1− 2−r+rε

)− hitting set generator for the sets decided by circuits
C : {0, 1}r → {0, 1} of size rq exists, running in time t(r), then
RP ⊆ TIME(t(nO(1))nO(1)).

This Lemma follows from the two previous Lemmas.

This Lemma shows that a (1− 2−r+rε

)-hitting set generator is
sufficient to derandomize RP.

Note that intuitively it seems at least that it should be easier to
generate a (1− ε)-hitting set generator than a (1− ε′) generator
when ε < ε′ because we have to hit “only larger sets”.
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Lemma For all ε > 0 there exists q ≥ 1 and δ > 0 s.t. there is a
polynomial time computable function that when input a
(1− 2−r+rε

)-hitting set H in {0, 1}r for the sets decided by circuits
of size rq outputs a 1/2-hitting set in {0, 1}r′ for the sets decided
by circuits of size r′ s.t. r′ = rδ.

This is the “randomness-amplification” property and it follows
from taking an explicit extractor to the set H.
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Notes

If a hitting set generator running in polynomial time exists then
BPP = P (recall that BPP = pRP[pRP]).

A way to describe a hitting set is that it is a “derandomized”
disperser.

A disperser (E ⊆ U × V ) wants to hit every subset of V of density
at least 1− ε with high probability (if we hit more than ε|V |
elements, we immediately hit every set of density 1− ε).

A hitting set hits every subset V of density at least 1− ε.

It is not known how to create efficient hitting set generators
unconditionally.
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Pseudorandom Generators

A hitting set generator is not sufficient to derandomize algorithms
with two-sided error. A concept analoguous to an extractor is
required.

Definition Let C be a set system over {0, 1}r. A pseudorandom
set with error ε for C is a (multi-)set P ⊆ {0, 1}r s.t. for all S ∈ C
|Prx∈P [x ∈ S]− Prx∈{0,1}r [x ∈ S]| ≤ ε/2.

A pseudorandom set induces a distribution that is ε-close to the
one induced by the uniform distribution.

Definition A pseudorandom generator with error ε for circuits of
size r is a deterministic algorithm that on input r outputs a
pseudorandom set in {0, 1}r for the sets decided by circuits of size
r.

It is not known how to create efficient pseudorandom generators
unconditionally.
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Pseudorandom Generators

Lemma If there exists a pseudorandom generator running in time
t(r) with error less than 1/3 for the sets decided by circuits of size
r then BPP ⊆ TIME(t(nO(1))nO(1)).

This fllows from the $pBPP completeness of CIRCUIT
ACCEPTANCE PROBABILITY ESTIMATION.
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Pseudorandom Generators

Pseudorandom Generators were developed for the purposes of
cryptography. Derandomization is “easier” than cryptography.

Cryptographic pseudorandom generators must be able to sample
the pseudorandom set efficiently, e.g. in time polynomial to the
length of an index to the pseudorandom set.

Cryptographic pseudorandom generators must be pseudorandom
for all polynomially sized circuis (rk for all constants k).

Derandomization requires only that we are able to generate the
pseudorandom set in polynomial time, as we simulate the algorithm
over the full set. Derandomization also requires that the set is
pseudorandom for circuits of size r.

Simplifying, derandomizing pseudorandom generators can use as
much time to generate the set as it takes to “break it”.
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Cryptographic Pseudorandom Generators

Cryptographic pseudorandom generators have been constructed
based on average-case hardness assumptions (e.g. intractability of
integer factorization and discrete logarithms).

Impagliazzo et al showed in 1989 that cryptographic pseudorandom
generators can be constructed under the assumption that
cryptographic one-way functions exist. A cryptographic one-way
function is a function f(x) s.t. for all polynomial time computable
algorithms g and a uniformly random x the probability that
g(f(x)) = x is negligible.

Theorem If a cryptographic one-way function exists then
BPP ⊆ SUBEXP.

Theorem If a cryptographic one-way function exists then P 6= NP.
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Sipser’s Hitting Set Generator

Theorem There exists a δ > 0 s.t. if for some c ≥ 1 there is a
language L ∈ TIME(2cn) s.t. any Turing machine for L use space
at least 2(c−δ)n on all sufficiently large input lengths n then
pP = pRP and P = BPP.

According to a previous Lemma it is sufficient to show that under
the assumptions in the theorem there exists a (1− 2−r+r1/2

)-hitting
set generator for the sets accepted by circuits of size rq with
polynomial (in r) running time for some constant q ≥ 1.

The Miltersen survey shows the construction for δ = (5q)−1
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Sipser’s Hitting Set Generator Construction (1/4)

Let r be the input parameter.

Let L = {0, 1}∗ be a language in TIME(2cn) and let M be a
Turing machine accepting this language. Assume M works using
the alphabet {0, 1}. Assume that the working tapes have a
maximum length of 2cn.

Split each work tape into 2cn/r blocks of length r bits.

For an input x to M let Hx be the union of all the configurations
the blocks take on during the computation. Let Hn,r be the union
of Hx for all x ∈ {0, 1}n.

Let Hr be H2q log r,r. This set can be construtced in polynomial
time (in r).

The claim is that Hr is a (1− 2−r+r1/2
)-hitting set generator for

circuits of size rq. Proof is by contradiction.
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Sipser’s Hitting Set Generator Construction (2/4)

If Hr is not a hitting set generator then for arbitrary values r there
must exist circuits Cr : {0, 1}r → {0, 1} of size rq s.t.
|Z(Cr)| ≤ 2r1/2

and Hr ⊆ Z(Cr). Z(Cr) = {x|Cr(x) = 0}. Note
that ((1− 2−r+r1/2

)(2r) = 2r − 2r1/2).

Define a compression function c(x) and its inverse d(x) for Hr. c(x)
takes as input an element from Hr and outputs an integer in
{0, 1}r1/2

that corresponds to the rank in Z(Cr).
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Sipser’s Hitting Set Generator Construction (3/4)

The simulation of M on inputs of length n = 2q log r using space
2(c−δ)n can be done as follows using machine M ′.

M ′ is given Cr (the “program”) on a separate special tape.

M ′ stores on all its work tapes c(y) for each block y on each work
tape of M . The blocks that are under a tapehead of M are not
stored in compressed form. M ′ uncompressing/compressing
configurations as it moves tapeheads.

The space required is O(rq) for the compression/decompression
operations, O(r) for the uncompressed blocks and O(r1/22cn/r) for
the compressed ones. Total is O(rq + 2cn/r1/2) ≤ 2(c−δ)n.

18



'

&

$

%

Sipser’s Hitting Set Generator Construction (4/4)

The simulation can be performed using the “not a hitting set” for
any circuit C : {0, 1}r → {0, 1} if |Z(C)| ≤ 2r1/2

and all blocks are
members of Z(C). This can be tested on the fly.

If Hr is not a hitting set then a circuit (possibly Cr) will be found
and we have a machine that accepts the language x ∈ L by finding
a circuit encoding the x into it accepting the randomness as input.

This machine will use less space than 2(c−δ)n and we have a
contradiction.
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