
The Trevisan Extractor

Johan Wallén

Helsinki University of Technology
Laboratory for Theoretical Computer Science

johan@tcs.hut.fi

T-79.300 Postgraduate Course in Theoretical Computer Science November 3, 2004

Introduction

We will give a detailed description of the extractor from Luca Trevisan, Extrac-
tors and Pseudorandom Generators, Journal of the ACM 48(4):860–879, 2001.
(Extended abstract in the 31st ACM Symposium on Theory of Computing, 1999.)

Our presentation is based on Miltersen’s survey.

We will first recall the definition of extractors and present the main building
blocks, namely source encodings and Nisan-Wigderson designs.

We will then present the extractor and prove its correctness.

Finally, we take a look at one concrete derandomisation result that can be ob-
tained using Trevisan’s extractor.

1

Extractors

Recall that the min-entropy of a probability distribution on a finite domain is at
least t if every outcome has probability at most 2−t.

Two distributions D1 and D2 on a finite domain are ε-close if their L1-distance
it at most ε,

‖D1 −D2‖1 =
∑
x

∣∣∣∣∣Pr
D1

[x]− Pr
D2

[x]

∣∣∣∣∣ ≤ ε.

2

Extractors (cont.)

An extractor is a device that extracts the randomness from weak random sources.

An extractor E with min-entropy threshold t and error ε is a function E : U ×
A → V , such that the distribution of E(x, y) is ε-close to the uniform distribution
on V when x is selected from a distribution with min-entropy at least t and y is
selected uniformly at random.

The extractor E is explicit , if |U | = 2n and |A| = 2k, and there is an algorithm
that on input (x, y) runs in time polynomial in n and k and outputs E(x, y).

Recall that an extractor can be seen as a bipartite graph with vertices (U, V)

and edges labelled by A.

3

The main theorem

The main theorem is the following (Theorem 9 in Miltersen’s survey):

For any constants k > c > 1, there is an explicit extractor

E : {0,1}rk × {0,1}O(log r+log ε−1) → {0,1}r

for any parameter r, with error ε and min-entropy threshold rc.

Actually, we will only consider the case c = 3 and ε = 1/10 (this is enough for
most constructions).

We will give a more precise form of the result later.

The polynomial running time is unfortunately large.

4

Source encodings

One way to prove the correctness of an extractor is to assume that the output
distribution is not close to uniform and show that the min-entropy of the source
is small.

To do this, we need a good way to show that a distribution has a small min-
entropy.

By a classical result, the Shannon entropy of a source is a lower bound on the
expected length of the codewords in every lossless source code.

If we instead use lossy source codes (combined with error correction), we can
get a similar result for the min-entropy.

5

Lossy source encodings

A lossy fixed length source code with rate k is a pair of functions, the encoder
c : {0,1}n → {0,1}k and the decoder d : {0,1}k → {0,1}n.

Note that we do not require that d(c(x)) = x.

Given any distribution D for x, we define the distortion of the source code rela-
tive to D by

Pr[d(c(x))i 6= xi],

where x is selected according to D and i is uniformly distributed in {1, . . . , n}.

6

Lossy source encodings (cont.)

We cannot obtain the result we want by constructing a lossy source code with
low rate and low distortion.

There are distributions with high min-entropy that admit lossy source codes with
low rate and low distortion (for example, the JPEG standard is based on this
observation).

But if we first apply a good error correcting code to our distribution, and then
consider lossy source codes for the encoded distribution, we do get the desired
result.

7

Error correcting codes

Let F be a finite field. Recall that a linear error correcting code with relative
minimum distance δ is a linear mapping e : Fn → Fm, m > n, such that the
fraction of entries where e(x) and e(y) differs is at least δ for all x 6= y.

That is,

dh(x, y)

n
=
|{i | e(x)i 6= e(y)i}|

n
≥ δ

for all x 6= y.

If e(x) has the form e(x) = (x, x′), we say that the code is systematic .

If |F| = 2, we call e a Boolean code.

8

Error correcting codes (cont.)

By concatenating a Reed-Solomon code with a Hadamard code with suitable
parameters, we get the following result (Lemma 12 in Miltersen’s survey).

Let n be a power of 2. There is a polynomial (in n) time computable, linear, sys-
tematic, Boolean code e : {0,1}n → {0,1}n10

with relative minimum distance
at least 1/2− 1/n4.

We omit the proof (it is not difficult, but we would have to take a detour to explain
it).

9

Main lemma for lossy source codes

The following lemma (Lemma 25 in Miltersen’s survey) is crucial.

Let n be a power of 2, and let e : {0,1}n → {0,1}n10
be the error correcting

code on the previous slide. Let D be a distribution on {0,1}n with min-entropy
at least t. Let e(D) be the induced probability distribution on {0,1}n10

.

Then every lossy fixed length source code for {0,1}n10
with distortion less than

1/2− 2/n2 relative to e(D) has rate at least t− 6 log2 n.

(Note that the relative distortion 1/2 is trivial.)

10

Main lemma for lossy source codes: proof

Let (c, d) be the source code, and let k be its rate. Let G be the event that a
sample y from e(D) has Hamming distance from d(c(y)) smaller than 1/2 −
1/n2.

Then Pr[y ∈ G] ≥ 1/n2, since otherwise the distortion would be more than
(1− 1/n2)(1/2− 1/n2) > 1/2− 2/n2.

Since the rate of the source code is k, there are at most 2k code words. Let w

be the most frequent value of c(y) given that y ∈ G. Let G′ be the event that
y ∈ G and c(y) = w. Clearly, Pr[y ∈ G′] ≥ 1/(2kn2).

11

Main lemma for lossy source codes: proof (cont.)

On the other hand, all y ∈ G are e-code words, and if c(y) = w, y is in the
Hamming ball with centre d(w) and relative radius 1/2−1/n2 (the distortion of
the source code).

By a result on list decoding (see Lemma 14 in Miltersen’s survey), this Hamming
ball can contain at most n4/2 code words of e. Thus, there are at most n4/2

outcomes in G′. Since the min-entropy of e(D) is at least t, each outcome has
probability at most 2−t. Hence, Pr[G′] ≤ 2−tn4/2.

It follows that 1/(2kn2) ≤ Pr[G′] ≤ 2−tn4/2 so that k ≥ t− 6 log2 n.

12

Nisan-Wigderson designs

A Nisan-Wigderson design is a set systems with small pairwise intersections.
More precisely, an (m, n, s, `)-Nisan-Wigderson design consists of m subsets
S1, . . . , Sm ⊆ {1, . . . , n} of size s such that

∣∣∣Si ∩ Sj

∣∣∣ ≤ ` for all i 6= j.

Explicit Nisan-Wigderson designs can easily be constructed using weakly uni-
versal hash functions, but this construction is unfortunately not good enough.

Fortunately, we only need a polynomial-time algorithm that constructs a suitable
Nisan-Wigderson design.

13

Constructing Nisan-Wigderson designs

The following lemma (Lemma 27 in Miltersen’s survey) is crucial.

For any integer constant c ≥ 1, and every m that is a power of 2, there is a deter-
ministic algorithm that on input m outputs an (m,100c2 logm, c logm, logm)-
Nisan-Wigderson design, using time polynomial in m.

The polynomial is quite large: the straightforward bound is

c logm ·m2
(100c2 logm

c logm

)

operations. Note that this is polynomial in m, since c is a constant.

14

Constructing Nisan-Wigderson designs: proof

We use a simple “greedy” algorithm. Suppose that we have already picked the
subsets S1, . . . , Si of the correct size and satisfying the constraint on the size of
the pairwise intersections.

If we can show that there exists a set Si+1 of the correct size that can be added
to the set system without violating the constraint, we have our polynomial-time
algorithm, since we can exhaustively search through all subsets of the correct
size (this is where the large factor comes from).

Pick randomly with replacement 2c logm members of {1, . . . ,100c2 logm}.
Let S be the resulting multiset. Using the Chernoff bound, it can be shown
that with high probability, S contains at least c logm disjoint elements and the
intersection of S with any of the previous sets is less than logm.

15

The Trevisan extractor

The Trevisan extractor is a polynomial-time computable map E : U × A → V ,
where U = {0,1}rk

, A = {0,1}c log r, V = {0,1}r, k is any integer constant
greater that 5, and c = 104k2.

We assume that all parameters are such that all numerical values in the con-
struction are integers.

We will show that for sufficiently large r, the extractor E (described on the next
slide) has error at most 1/10 and min-entropy threshold at least r3.

16

The Trevisan extractor (cont)

We describe E as an algorithm.

Given the parameter r, the extractor uses the previous lemma to construct an
(r, c log r,10k log r, log r)-Nissan-Wigderson design S1, . . . , Sr.

Let e : {0,1}rk → {0,1}r10k
be the error correcting code mentioned earlier.

Let x ∈ U be the first input of E. The extractor computes the value e(x). We
represent the sequence of bits e(x) by its characteristic function

g : {0,1}10k log r → {0,1}.

17

The Trevisan extractor (still cont.)

Let y ∈ A be the second input of E. Each set in the design in a subset of
{1, . . . , c log r}. We view y as a bit sequence of length c log r.

For each set in the design, let yS be the subsequence of the bits indexed by S.
For example, if y = 10111001 and S = {2,4,7}, yS = 010.

The output of the extractor is E(x, y) = g(yS1
)g(yS2

) · · · g(ySr).

That is, the extractor uses the design to select subsequences of the uniformly
distributed input. Then the characteristic function of the encoded version of the
input from the weak random source is used to obtain one bit from each subse-
quence.

18

Correctness proof

It remains to show that the extractor E has error 1/10 and min-entropy threshold
r3.

Let D be a distribution on U = {0,1}rk
with min-entropy at least r3. Pick x

according to D and y ∈ A uniformly at random.

Suppose that E(x, y) is not 1/10-close to the uniform distribution.

By a simple result (Lemma 21 in Miltersen’s survey), there is is a predictor with
advantage ε = 1/20r for one of the bits of E(x, y), say the ith, given the
previous bits. That is, the probability that the predictor outputs E(x, y)i given
E(x, y)1, . . . , E(x, y)i−1 is at least 1/2 + ε.

19

Correctness proof (cont.)

We will use the predictor to construct a good lossy source code (c, d) for e(x)
and thus reach a contradiction.

The ith bit of E(x, y) is g(ySi
). The input to the predictor is g(yS1

) · · · g(ySi−1
).

For the moment, we will set the bits ySc
i

(that is, the bits not in ySi
) to fixed values.

Let j < i. Since
∣∣∣Sj ∩ Si

∣∣∣ ≤ log r and all the bits in ySj\Si
have been fixed, we

can for fixed x (and hence g) tabulate the values g(ySj
) indexed by Sj ∩ Si as a

bitstring of length 2log r = r.

We define c(e(x)) to be the concatenation of these r tables and the binary
representation of i. The rate of this source code (with additional padding) is
r2 + log r.

20

Correctness proof (still cont.)

Given a code word z = c(e(x)), we go through all the possible values of ySi
,

and use the tables in the code word to look up the corresponding values of
g(S1), . . . , g(Si−1). We give these values to the predictor to get a prediction of
g(Si).

Since we try all possible values of Si, we get predictions for all bits of e(x) (the
correct g(ySi

) is the value of e(x) indexed by Si). We output the concatenation
of the predicted values of e(x) as d(c(e(x))).

21

Correctness proof (still cont.)

Since the predictor has advantage ε, the probability that d(c(e(x)))j 6= e(x)j is
at most 1/2−ε, when x is selected according to D and j is uniformly distribution.

That is, the distortion is at most 1/2− ε = 1/2− 1/20r.

By the lemma earlier, the rate of the source code must be at least r3−3 log20r.
This is a contradiction, since the rate was already seen to be r2 + log r.

Thus, the output of the extractor must be 1/10-close to uniform.

22

Randomness efficient amplification

We have earlier seen results of the type “if we have a good extractor, we can
decrease the error probability of an algorithm a lot without using many extra
random bits”. We will use the Trevisan extractor to obtain an unconditional result
of this type.

Suppose that we have a two-sided error algorithm that runs in time T and uses
r random bits to achieve an error probability of 1/3.

Let E : {0,1}rk×{0,1}ck log r → {0,1}r be the Trevisan extractor with error at
most 1/10 < 1/3 and min-entropy threshold at least r3. Let the running time of
E be tk(r). (Here, k is a parameter.)

23

Randomness efficient amplification (cont.)

There is an two-sided error algorithm running in time (tk(r)+T)rck that uses rk

random bits to achieve an error probability of 2r3−rk
. (This is a concrete version

of Lemma 22 in Miltersen’s survey.)

Let x ∈ {0,1}rk
be the random bits of the simulator, and let y1, . . . , yrck ∈

{0,1}r be all the possible outputs of the Trevisan extractor when the first input
is x.

The simulator simulates the original algorithm on all the coin toss sequences yi

and outputs the majority outcome.

24

Randomness efficient amplification: correctness

By symmetry, we can assume that the correct output is “accept”. Then at least
2/3 of the strings in {0,1}r corresponds to accepting computations of the orig-
inal algorithm.

We claim that less than 2r3 of the random inputs x to the simulator make it reject.

Suppose not. Then the uniform distribution on the choices of x that causes reject
have min-entropy at least r3. If we pick such an x, and the second input to the
extractor uniformly at random, we obtain a value y ∈ {0,1}r that is 1/10-close
to uniform.

25

Randomness efficient amplification: correctness (cont.)

Recall that the statistical distance between two distributions D1, D2 on a finite
domain A can be expressed as

‖D1 −D2‖1 =
∑

d∈A

∣∣∣∣∣Pr
D1

[d]− Pr
D2

[d]

∣∣∣∣∣ =
1

2
max
T⊆A

∣∣∣∣∣Pr
D1

[d ∈ T]− Pr
D2

[d ∈ T]

∣∣∣∣∣ .

Let T ⊆ {0,1}r consist of all accepting coin tosses of the original algorithm. If y

is uniformly distributed, Pr[y ∈ T] ≥ 2/3 (since the correct output is to accept).

If y is selected using the extractor from the rejecting coin tosses for the simulator,
Pr[y ∈ T] > 1/2, since y is 1/10-close to uniform. This is a contradiction, since
a minority of the values y causes a reject.

26

