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Introduction: Aspects of Equilibrium and

Nonequilibrium Phenomena

• Equilibration of a (physical, thermodynamic, statistical mechanics, dynamical)

system could be characterised by the time-independent behaviour of some

quantities of interest.

- A system of pointlike masses interacting in a Newtonian way: in the absence

of external forces, the center of mass moves with constant velocity.

- A converged Markov chain: the states of the chain are distributed according to

the stationary distribution.

- Statistical mechanics: the probability distribution of states in equilibrium

doesn’t change:

pi ∝ exp(−βEi ), (1)

where Ei is the energy of the i :th state and β is the inverse temperature.
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• The fluctuations in equilibrium are also of great interest (correlations, phase

transitions etc.).

• What happens if a system is perturbed out of the equilibrium?

- Since the equilibrium state is a stationary one, it might not be too far-fetched

to think that the system simply returns to the equilibrium if left alone.

- Ususlly this is the case (at least for small perturbations), but not always.

Adding enough interactions and/or nonlinearities, even a structurally very

simple system might show extremely complicated behaviour (strange

attractors, chaos, metastable states etc.).

- Quantifying how a system approaches the equilibrium (if there is an

equilibrium state to begin with) seems therefore much more difficult a task

than characterising the properties of the system when in equilibrium (which is

not an easy task itself).

• These issues are exemplified by the following simple Metropolis sampling from
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Laplacian and Gaussian distributions.
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Figure 1: Sampling from Laplacian distribution with Metropolis update rule. Results

are shown for two Gaussian proposal distributions with standard deviations of 0.5 (left)

and 0.25 (right). 5000 last samples are used to draw the histograms.
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Figure 2: Sampling from Gaussian distribution with Metropolis update rule. Results

are shown for two Gaussian proposal distributions with standard deviations of 0.5

(left) and 0.25 (right). 5000 last samples are used to draw the histograms.
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• From these examples, the following remarks could be made:

- The “path” to the equilibrium seems to be roughly linear indepenent of the

target pdf (Laplacian vs. Gaussian).

- The slope of the (linear) path depens on the details of the algorithm (width of

the proposal distribution) and the starting point (x = −100 in this case).

- The fluctuations in equilibrium (i.e. how fast the chain “scans” the stationary

distribution ) also depend on the details of the algorithm.

- Would it be possible to quantitatively predict this behavior given the

algorithmic details and the structure of the state-space (nonequilibrium

dynamics)?

• In this presentation, an attemp is made to cast some light on these questions for

a specific system (K (-XOR)-SAT) and a specific stochastic algorithm (walk-SAT).

All the results will be a priori characteristic to this system only. See the

references for the original presentation(s) of these issues.
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• NOTE: The nature of the K (-XOR)-SAT/walk-SAT problem is such that the

analogy with the simple MCMC-simulation example is far from perfect; it still

might be helpful to keep in mind that we’re trying to understand (qualitatively &

quantitatively) how the algorithm makes the system evolve in time (i.e. its

dynamics). This issue is discussed further in the next section.
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A Glimpse of K (-XOR)-SAT and walk-SAT

• Elements of a random K -satisfiability formula:

- M logical clauses {Cµ}µ=1,...,M defined over N Boolean variables

{xi = 0, 1}i=1,...,N , where 0 = FALSE, 1 =TRUE.

- Every clause contains K randomly chosen Boolean variables that are

connected by logical OR operations and appear negated with probability 1/2;

for example Cµ = (xi ∨ x̄ j ∨ xk).

- In the final formula all such clauses are connected by logical AND operations:

F =
M∧

µ=1

Cµ. (2)

- Such a formula is thus satisfied iff each of the clauses has a correct

assignment for at least one variable.
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• Some established facts about the K -SAT:

- For K = 2 the problem is easy and a polynomial-time solving algorithm

exists.

- For K ≥ 3 the problem is NP-complete and so it is expected that no efficient

polynomial-time solvers for generic K -SAT formulas exist.

- For α < 4.26, α := M/N , N sufficiently large, almost all 3-SAT formulas

are found to be satisfiable. When α > 4.26 all formulas are found to be

unsatisfiable with probability one, as N →∞. This “phase transition”

coincides with a strong peak in the algorithmic solution times of the complete

solver algorithms.

- A second phase transition for K = 3 occurs within the satisfiable phase

when the solution space breaks from an exponentially large cluster into an

exponential number of clusters at α = 3.92.

• Similar, but analytically simpler model K -XOR-SAT:
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- The variables that appear in the clauses are now connected with logical XOR
operations (⊕).

- Such a clause is then satisfied iff an odd number of variables is assigned

correctly.

- This can be used to map the problem into a linear equation ( mod 2), and

thus solved in O(N 3) steps by a global algorithm (e.g. Gaussian elimination).

- However, if local algorithms are used, similar phenomena occur for

3-XOR-SAT as for 3-SAT: transition from sat-regime to unsat-regime at

α = 0.981; in regime 0.818 < α < 0.981 formulas are satisifiable a.s., but

the solution space decays into an exponential number of clusters.

• The walk-SAT algorithm for solving SAT-problems:

- 1) Assing all N variables randomly; then there will be αs N satisfied and

αu N = (α − αs)N unsatisfied clauses.

- 2) Select an unsatisfied clause C randomly and one of its K variables v∗ (a)
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with probability q randomly (walk step) (b) with probability 1− q the variable

in C occurring in the in the least number of satisfied clauses (greedy step).

- 3) Invert the current assigment of v∗. All clauses containing v∗ that were

unsatisfied become satisfied. Clauses containing v∗ that were satisfied

behave differently for K -SAT and K -XOR-SAT: For K -SAT a previously

satisfied clause becomes unsatisfied iff v∗ was the only correctly assigned

variable in this clause. For K -XOR-SAT, every previosly satisfied clause

containing v∗ becomes unsatisfied.

- 4) Repeat 2) and 3) until all clauses become satisfied or some upper limit on

running time is reached.

• Comments about walk-SAT:

- Walk-SAT isn’t guaranteed to find a solution (in a finite time) even if the

formula is satisfiable.

- There are many variants of the greedy step: “select the variable in C leading
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to minimal number of unsatisfied clauses (maximal gain)” or “select the

variable in C minimizing the number of previously satisfied clauses that

become unsatisfied (minimal negative gain)”

- Restarting the algorithm after 3N steps leads to exponential acceleration for

pure random walk (q = 1) dynamics.

- The walk-SAT algorithm “induces” a stochastic process on the state-space

{0, 1}N which is quite obviously a Markov chain. This is nevertheless not of

the standard form, since it is not ergodig (probability going from a solution

state to nonsolution state is zero, since the algorithm stops there). Thus the

questions about stationary distributions, convergence etc. are somewhat

ill-posed.

- In this presentation these nonequilibrium issues are treated analytically in a

very hand-waving way (and mostly just for pure (random) walk-SAT and/or

K -XOR-SAT).
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Numerical Results by Figures

• We are looking for the time-behaviour of αu(t) (number of unsatisfied clauses

per variable under walk-SAT); this could be thought as an energy density for the

system.

• NOTE: In the following, time is measured in MC sweeps (i.e. 1t = 1/N ).

• Phenomenology is roughly speaking the following (3-SAT, N � 1, pure walk

dynamics):

- The algorithm starts with a significant fraction of unsatisfied clauses;

αu(0) = (M/8)/N = α/8 almost surely.

- 1) For α < αd ≈ 2.7 (αd =“dynamical threshold”), a solution is found after a

finite number of MC sweeps (i.e. αu(t) becomes zero at finite MC times).

- 2) For α > αd , the energy density αu(t) initially decreases and equilibrates
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to a nonzero plateau value. For larger times αu(t) fluctuates around this

plateau value, and reaches zero if the formula is satisfiable (such a fluctuation

has an exponentially small probability).

• Introducing good heuristics (greedy steps) can make the plateau energy lower

and hence the fluctuation needed to reach zero more feasible.

• For K -XOR-SAT (K = 3, q = 1) the behaviour is similar (αd ≈ 0.33).
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Rate-Equation Approach: Notations

• The main idea: characterize each variable only by the number of satisfied and

unsatisfied clauses it is contained in.

• Hence subdivide the set of all N Boolean variables at time t into subsets of

Nt(s, u) variables belonging to s satisfied and u unsatisfied clauses.

• Then at time t randomly selected variable is in the set characterized by s, u with

probability pt(s, u) := Nt(s, u)/N .

• This probability pt(s, u) is changed in the course of walk-SAT, but for all

variables s + u remains constant because it counts the total number of clauses

(M ).

• One can then compute the total (expected) number of unsatisfied clauses
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Nαu(t):

αu(t) = 〈u〉t
K
, (3)

where 〈·〉t =∑s,u(·)pt(s, u) and the factor K comes from the fact that when

summing over variables each clause is counted K times.

• The walk-SAT algorithm doesn’t select variables according to pt(s, t) but

chooses randomly an unsatisfied clause C∗ and flips one of its variables v∗

according to a chosen heuristic (walk or greedy step).

• The probability that this variable v∗ belongs to exactly s satisfied and u

unsatisfied clauses is denoted by p( f li p)
t (s, u) and can be calculated from

pt(s, u) assuming the independency of neighboring sites (i.e. the joint

distribution of K variables being a in one unsatisfied clause factorizes).
aThe original article says "three variables being"...

11



Slide 23

• This assumption fails and becomes an approximation for other than the initial

configurations, but it allows a description of the walk-SAT dynamics in terms of

pt(s, u).

• For a walk step, variable v∗ is randomly selected from a random unsatisfied

clause C∗. Given s and u there are appears to be uNt(s, u) possibilities for

doing this (assuming independent neighbors?).

• By normalization, one obtains

p( f li p−walk)
t (s, u) = upt(s, u)

〈u〉t =: p(u)t (s, u). (4)

• For greedy steps, an expression for p( f li p−K−greedy)
t (s, u) can be derived in

terms of p(u)t (s, u), but these expressions are rather cumbersome.

• For K = 2 we have
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p( f li p−2−greedy)
t (s, u) =∑

s1,u1,s2,u2

p(u)t (s1, u1)p
(u)
t (s2, u2)

×[δ(s1,u1),(s,u)2(s2 − s1)+ δ(s2,u2),(s,u)2(s1 − s2)],

where δ is the Kronecker delta and2 is the Heaviside function with

2(0) = 1/2.

• Generally then,

p( f li p)
t (s, u) = qp( f li p−walk)

t (s, u)+ (1− q)p( f li p−K−greedy)
t (s, u), (5)

but the main idea of the final analysis doesn’t depend (fortunately) on the details

of the flipping probability.
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Interlude: the Poissonian Ansatz

• Let us suppose q = 1 and that the variables s and u are independently

distributed in a Poissonian way for all times t :

pt(s, u) = e−Kα [Kαs(t)]s[Kαu(t)]u
s!u! . (6)

• This is strictly valid only at time t = 0 and deviations appear at larger times.

• Thus on average each variable is contained in Kαs(t) = K (α − αu(t))

satisfied and Kαu(t) unsatisfied clauses.

• Plugging the Poissonian ansatz to the equation (4) one gets

p( f li p)
t (s, u) = e−Kα [Kαs(t)]s[Kαu(t)]u−1

s!(u − 1)! , (7)

Slide 26

which is again a Poissonian distribution of s and u − 1.

• Hence, on average the flipped variable is contained in Kαs(t) satisfied and

Kαu(t)+ 1 unsatisfied clauses.

• Let us apply this to the case of K -XOR-SAT: by flipping a variable v∗ all s

satisfied clauses containing v∗ become unsatisfied whereas all u unsatisfied

ones become satisfied.

• The expected number of unsatisfied clauses N u
t changes during one step as

1N u
t = −[Kαu(t)+ 1] + Kαs(t) = Kα − 2Kαu(t)− 1. (8)

• Going to the large N limit (where fluctuations become negligible) we have

N u
t = Nαu(t). Measuring time in MC-time1t = 1/N
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and replacing the difference by derivative one gets

α̇u(t) = Kα − 2Kαu(t)− 1. (9)

• Integrating this differential equation yields

αu(t) = 1

2K
(Kα − 1+ Ce−2K t). (10)

• Assuming that in a typical starting configuration half of the clauses are satisfied

and half are not (i.e. αu(0) = α/2) one gets

αu(t) = 1

2K
(Kα − 1+ e−2K t). (11)
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• From this simple Poissonian approximation one gets αd = 1/K . For K = 3

this value 0.333 . . . agrees perfectly with numerical simulations.
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Rate-Equation for K -XOR-SAT

• There are some systematic deviations from the Poissonian behaviour and so it is

necessary to go beyond the Poissonian approximation (especially if greedy steps

are included).

• However, the assumption of independent neighboring sites is still built-in to the

analysis.

• Only the K -XOR-SAT-case is considered here.

• Reflect the following: (I quote Barthel et al. ) “ As above, we denote by

Nt(s, u) = N pt(s, u) the expected number of variables that occur in exactly s

satisfied and u unsatisfied clauses at time t ”.

• At first glance this seems to be serious abuse of notation that is (unfortunately)
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very typical for physicists.

• This abuse was done also when discussing the Poissonian ansatz.

• In my mind the resolution is following: when going to the very large N limit, the

probability distribution pt(s, u) becomes very highly peaked around its mean

value w.r.t time t (i.e. the history of the walk-SAT), and so we can say loosely that

"on the average" this and that happen and forget that pt(s, u) in fact depends on

the specific “run” of walk-SAT.

• Anyways, a variable v∗ with s∗ satisfied and u∗ unsatisfied clauses is flipped at

time t ; this happens with probability p( f li p)
t (s∗, u∗).

• Contributions to Nt+1t(s, u) come from the following three processes (My

explanation differs slightly from Barthel’s):

- 1) The contribution from v∗ itself : The flipped variable belongs to s satisfied

and u unsatisfied clauses with probablility p( f li p)
t (s, u). Hence Nt(s, u)
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reduces (on the average) by amount 1 · p( f li p)
t (s, u). Now recall that for

K -XOR-SAT all the unsatified clauses containing v∗ become satisfied and

vice versa. The flipped variable belongs to u satisfied and s unsatisfied

clauses with probability p( f li p)
t (u, s). This adds to Nt(s, u) (again on the

average) an amount of 1 · p( f li p)
t (u, s).

- 2) Neighbors of v∗ in previously satisfied clauses: The flipped variable occurs

(on an average) in 〈s〉( f li p)
t previously satisfied clauses, where

〈·〉( f li p)
t =∑s,u(·)p( f li p)

t (s, u). Since each clause contains K variables,

and since random formulas are locally treelike there are (on an average)

(K − 1)〈s〉( f li p)
t such neighbors in previously unsatisfied clauses. All these

clauses become unsatisfied. Therefore, for these variables the number of

satisfied clauses they are contained in goes down by one (and the number of

unsatisfied clauses increases by one). According to the “independent

neighbors”-assumption, these variables belong to s satisfied and u unsatisfied

clauses with probability spt(s, u)/〈s〉t . Therefore, this process subtracts (on
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an average) an amount of (K − 1)〈s〉( f li p)
t spt(s, u)/〈s〉t from Nt(s, u).

Now, however, these variables don’t vanish from the system but are added to

Nt(s − 1, u + 1) (or alternatively: by the same token, Nt+1t(s, u) recieves

a positive contribution from Nt(s + 1, u − 1)).

- 3) Neighbors of v∗ belonging to previously unsatisfied clauses: The

contributions are analoguous to those of the previous discussion.

• Combining the contributions from the previous discussion, one gets

Nt+1t(s, u) = Nt(s, u)− p( f li p)
t (s, u)+ p( f li p)

t (u, s) (12)

+(K − 1)〈s〉( f li p)
t

(
− spt (s,u)
〈s〉t +

(s+1)pt (s+1,u−1)
〈s〉t

)

+(K − 1)〈u〉( f li p)
t

(
−upt (s,u)
〈u〉t +

(u+1)pt (s−1,u+1)
〈u〉t

)
.

• Setting1t = 1/N and replacing differences by differentials for large N one
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obtains

Nt+1t(s, u)− Nt(s, u) = N (pt+1t(s, u)− pt(s, u)) (13)

= pt+1t(s, u)− pt(s, u)

1t
→ d

dt
pt(s, u).

And so we get (finally) the set of ordinary differential equations governing the

dynamics of pt(s, u):

ṗt(s, u) = −p( f li p)
t (s, u)+ p( f li p)

t (u, s) (14)

+(K − 1)〈s〉( f li p)
t

(
− spt (s,u)
〈s〉t +

(s+1)pt (s+1,u−1)
〈s〉t

)

+(K − 1)〈u〉( f li p)
t

(
−upt (s,u)
〈u〉t +

(u+1)pt (s−1,u+1)
〈u〉t

)
.

• Given the initial distribution p0(s, u) (e.g. the Poisson distribution with

αs(0) = αu(0) = 1/2), this set of ODE’s can be solved numerically.
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References and Discussion

• References are:

- G. Semerjian, R. Monasson: Relaxation and metastability in a local search

procedure for the random satisfiability problem. Physical Review E 67 (2003).

- W. Barthel, A. K. Hartmann, M. Weigt: Solving satisfiability problems by

fluctuations: The dynamics of stochastic local search algorithms. Physical

Review E 67 (2003).

• Both papers deal with the same topic; this presentation followed Barthel’s

approach.

• The reason for this choice is that while Semerjian’s approach is more rigorous

and mathematically elegant it requires some knowledge of physics for

understanding it.
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• They develop a sort of a “quantum-mechanical” formalism for the system, and

write the time evolution of the system in terms of a (stochastic) evolution

operator, and the evolution equation is then solved by a sort of perturbative

expansion of the evolution operator. According to the French tradition enough

blind spots are left in the analysis in order to lead the reader sufficiently astray.

• Semerjian & Monasson study the pure walk-SAT only (no greedy steps).

• Barthel’s paper is more readable, but at the cost of being extremely heuristic.

• The Magic Words “On the Average” are said once in a while never really

explicating what exactly is ment by this average (average over time-course of

walk-SAT for a given formula, the randomness of initial formula, both, some other

randomness, the average w.r.t. Poisson distribution...).

• I found myself wondering would it even be possible to present this analysis more
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rigorously using just probability theory and stochastic processes / stochastic

differential equations.

• It seems that equation (14) should apply to other local search algorithms as well,

provided that one can obtain an expression for p( f li p)
t (s, u) for that algorithm (in

terms of pt(s, u) of course) and that independent neighbors -assumption etc. is

sufficiently valid.

• Barthel et al. also present an interesting computation of

P(αu(0)→ αu(t f ) = 0) for the Poissonian approximation but it’s not

presented here.
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