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The Propp-Wilson Algorithm

Exact Sampling:
The Propp-Wilson Algorithm

Matti Jarvisalo
10th November 2003

Based on
Sections 10 and 11 of O. Haggstrém. Finite Markov Chains and Algorithmic
Applications. Cambridge University Press, 2002.

and on

J.G. Propp, D.B. Wilson. Exact Sampling with Coupled Markov Chains and
Applications to Statistical Mechanics. Random Structures and Algorithms 9,
pp. 223-252, 1996.
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Motivation (1/2)

The Propp-Wilson Algorithm

Recall: the objective is to produce random samples according to some
given distribution on a finite set

Coupling:

e Produced output “near enough” the equilibrium distribution
(measured with a suitable metric)

e Analytic methods for deriving upper bounds on the time of
convergence

Problems:
e What's close enough?

e Deriving upper bounds can be tedious
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Exact sampling (Propp-Wilson):
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Moativation (2/2)

e An algorithmic idea

e Produced output distributed exactly according to the equilibrium
distribution

e No guaranteed bounds for time of convergence
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Contents
e The Propp—Wilson algorithm

e Sandwiching

— Attempts to make Propp—Wilson more feasible computationally
for certain cases

e An example application: the Ising model
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Propp-Wilson vs Ordinary MCMC

e Run multiple copies of a Markov chain instead of just one

— The copies will have different initial values

e Run from the past to present instead of from the present onwards
— As we'll see, this is critical

— "“coupling—from—the—past’
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Propp—Wilson: Preliminaries

Task: Sample from a given probability distribution 7 an a finite set
S = {81,...,Sk}.

e Construct a reversible, irreducible and aperiodic Markov chain
with state—space S and stationary distribution =

Let
e P be the transition matrix of the chain

e Uy, U_1,U_g,... be a sequence of i.i.d. random numbers
distributed uniformly on [0, 1]

e ¢:5x%x0,1] = S a valid update function

e Ny <Ny <..,where N;eN, eg. (N1,Ns,...)=(1,2,4,8,...)
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The Propp—Wilson Algorithm
1.m:=1

2. Foreachsc S
Starting in s, simulate the Markov chain from time —N,, to
time O using ¢ with U_n, 41, U_nN, +2,...,Uo

3. If all k chains end up in the same state s’ at time 0
return s’
else
m:=m-+1
goto 2
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The Propp—Wilson Algorithm lllustrated (1/2)
We have
o (N,No,..)=(1,2,4,8,...)
o S ={s1,52,53}
Here's how it goes:
e N; = 1 = start by running the chain from time —1 to 0

e Let's assume that we end up with

d)(sla Uo) =38
P(s2,Up) = s2
¢(837 UO) = S1.

e ¢(s1,Uq) # ¢(s2,Ug) = we back up in time
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The Propp—Wilson Algorithm lllustrated (2/2)
e N5 = 2 = run the chain from time —2 to 0

e Now we end up with

¢(p(s1,U-1),Us) = ¢(s2,Up) = s2
¢(p(s2,U_1),Us) = ¢(s3,Up) = 51
¢(p(s3,U-1),Uq) = ¢(s2,Up) = s2.

e Backing up once again gives

¢(¢(¢(¢(51)U—3)7U—2)7U—l)aUO) =...=82
¢(¢(¢(¢(52)U—3)7U—2)7U—l)aUO) = ... =82
d(d(P(P(s3,U-3),U-2),U-1),Up) = ... =52

Victory!
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Victory, you say?
That's right:

e Imagine that we would continue by running the chains from times
-8,-16,...

e We reused the random numbers
=> no matter what state we hit at time —4, we will still end up in
state sg at time 0
= running from time —4 equals to running from time oo to the
present (wow)
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The Exact Sampling Property

Let the preliminary assumptions hold.

Theorem. Suppose that the Propp—Wilson algorithm terminates with
probability 1, and write Y for it's output. Then, for any
i€{1,...,k}, we have

Pr(Y =s;) =m.
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Variations that are Intuitive, but Don't Work

“Coupling—to—the—future.” Why not just start from time 0 and
start chains from all states, and stop when they coalesce?

“Recycle, not”. Why bother with storing and reusing the random
variable?
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Things to Notice about Propp—Wilson

e Possibly an infinite loop
= might not terminate

e The update function ¢ plays a crucial role

e Even a valid but badly chosen ¢ can lead to termination
probability 0

e The choice of (N7, Ns,...) makes a difference

e The random numbers need to be stored
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Sandwiching

e A true set—back with Propp—Wilson:
Simulating k& Markov chains when the state—space is large is
infeasible.

e For cases with certain properties, sandwiching is one answer

e Instead of running k chains, we only need to run 2!
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Sandwiching Requires Monotonicity

e For sandwiching to work, we need monotonicity: to have a partial
ordering on the states that is not broken by the update function.

e Intuitively, path starting from a “higher” state never dips below a
path starting from a “lower” state.

= The invention here is that running two chains is enough:
one starting with the “top” state and the other from the
“bottom” state.

e Ladder walk with a valid update function (a toy example).

e Critical: without a proper ordering—update function —pair
sandwiching doesn’t work!
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Applying Propp—Wilson: the Ising Model (1/2)

Let G = (V, E) be a graph.

The Ising Model: a way of picking a random element from
{—1,+1}IVI (the set of configurations)

e Main quantities:
— temperature. T > 0
— energy of a configuration ¢ € {—1, +1}IV:

{z,y}ek
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Applying Propp—Wilson: the Ising Model (2/2)
We pick a random configuration a temperature T' according to the

probability measure

e H(e)/T

m(c) =

ZC'E{—],+]}\V\ e—H(")/T

e At T = 0 the probability is divided evenly between “all plus” or
“all minus" configurations

e With high temperatures “low energy”’ configurations are favoured

e Physical interpretation and phase transition
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Simulation Algorithms for the Ising Model (1/2)
We need
e a sampler (a Markov Chain) for the configuration space; and
e an suitable ordering to enable sandwiching.
The (Gibbs) sampler:

e Given X, obtain X, by
— picking a vertex v € V at random, and

— updating by

Xoir(0) +1  if Upg1 < 7(Xn(v) = +1 | Xn(V \ {v}) = c—v)
n+1 =
* —1 otherwise

~N
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Simulation Algorithms for the Ising Model (2/2)
A Propp-Wilson algorithm based on this sampler:
e 2Vl chains
e At each time, pick the same vertex to update in all the chains
A partial ordering is intuitive for sandwiching

e For any c1,co € {—1,+1}‘V| we define ¢; < cg if ¢1(v) < ¢e3(v)
forallveV

~N
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Conclusion

e The Propp—Wilson algorithm
— Algorithmic idea, exact sampling
— No convergence bounds

— Practically infeasible for large state-spaces without e.g.
sampling

— Care is needed in selecting the update function and (if one
exists) the ordering on the states

~N
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