

- ullet clustering coefficient ${\mathcal C}$
- \bullet characteristic path length ${\mathcal L}$
- proximity ratio $\mu = (\mathcal{C}/\mathcal{L})/(\mathcal{C}_r/\mathcal{L}_r)$
- connectivity length \mathcal{D}
- \bullet number of relevant cycles (longer than three)
- degree distribution
- efficiency
- approximate entropy

IMDB
WSPG
CE
MBTS

2925 16.00 5.60

> 1.22 1.51

10.60 4.75

1.01

0.17 0.10

0.47 0.03

0.29

0.46 0.63 0.28 0.26

2.48

2398

1.12

0.001

 2.3 ± 0.1

 \exp

Network

Internet

Morphing

A non-uniform structure S is generated by morphing a regular structure S_1 and random structure S_2

- (a) substructures for S are taken from S_1 with probability (1-p) and from S_2 with probability p (e.g. SAT)
- (b) a fraction 1-p of the substructures of S are taken from S_1 , fraction p from S_2 (e.g. graphs)
- (c) operations exist such that $S=(1-p)\cdot S_1+p\cdot S_2$ can be calculated directly (e.g. matrices)

$\mathcal C$ and $\mathcal L$ for the morphing model

Metrical networks

WS-model requires connectivity and does not handle edge-weights; a more general definition of connectivity length $\mathcal D$ is suggested to "replace" $\mathcal L$ and $1/\mathcal C$:

$$\mathcal{D}(G) = H(\{d_{i,j}\}_{i,j \in G}) = \frac{n(n-1)}{\sum_{i,j \in G} 1/d_{i,j}}$$

$egin{array}{l} { m Growth\ and\ preferential\ attachment} \ { m (BA-model)} \end{array}$

- in natural small-world networks, the degree distribution appears to be of type $P(k) \approx k^{-\gamma}$
- ER-model obeys Poisson, WS even narrower
- \bullet Hogg's ultrametric distance produces more vertices of high and low egrees, but not the small-world property
- BA-model: initial set of vertices, addition of new vertices one by one, edges by preferential attachment

