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Notational conventions

a graph G = (V, E)

the set of vertices of a graph

the set of edges of a graph

the number of vertices in a graph, n = |V|
the number of edges in a graph, m = |E|
the degree of a vertex

the average degree of a vertex in a graph

1 Introduction

Within the past few years, there has been a rapidly growing interest in realis-
tic modeling of complex systems, such as social networks, chemical structures,
neural systems, and communication networks such as the Internet. With even
a little knowledge of networks, it is quite evident that these and many other
complex systems can be modeled — to some extent — by networks. Many
believe that networks are a modeling tool that can represent any complex nat-
ural system with sufficient accuracy for meaningful analysis [LM01]. The entire
system can rarely be captured in just one simplified network model, but many
important aspects can be modeled and studied with ease by the use of network
models.

Since the research effort on natural networks has expanded, in part due to the
1998 article in Nature by Watts and Strogatz [WS98|, it has become clear that
the previously existing models for networks do not capture some of the essential
properties inherent in natural networks of interest. Many new models have been
proposed and studied during these past years, one improving the other. In order
to understand the approaches and results, some graph theoretical background
is necessary.



2 Graphs

The mathematical equivalent of a network is called a graph. A graph is a pair
of sets G = (V, E), where the elements of V' are called the vertices of the graph
(i.e. the nodes of the network) and those of E are edges (i.e. the connections
in the network). The cardinalities of the sets V' and E are denoted by |V| =n
and |E| = m. For a comprehensive review on graphs as well as an introduction
to random graphs, see [Die00].

An edge connects two vertices to each other. The connection can be directed or
undirected; in a directed graph, an edge (v,w) € E (where v,w € V) is thought
to have a direction “from v to w” (as a “one-way street”). Here the graphs are
in general considered to be undirected, i.e. (v,w) and (w,v) both represent
the same two-way connection. The edges could also be assigned weights; in an
unweighted graph, all weights are considered to be the same, usually one.

A common way to represent a graph is by its adjacency matriz A, which is an
n X n matrix, with one row and column per each vertex v;, and a;; = 1 exactly
when (v;,v;) € E, zero elsewhere. The degree k; of a vertex v; is the number of
edges joined to v;, i.e. the row sum of the ith row of A (or respectively the ith
column, as for undirected graphs A is symmetric). If all vertices have the same
degree k, the graph is k-regular. For a non-regular graph, the average degree k
of the graph is simply 2 >/ k;.

The important property of a graph, entirely determined by its adjacency matrix
A, is its connection topology, i.e. the manner in which the vertices are connected.
The connection topology may be regular, random, or something in between of
these two extremes [WS98]. Examples of regular graphs are lattices such as
a ring of vertices all connected to the same number of their nearest neighbor
vertices on each side.

Figure 1: Two ring lattices; with connections only to “nearest neighbors” on the
left, fully connected on the right [Str01]

Random graphs have traditionally been generated by first fixing a set of vertices
and then choosing edges to be present randomly, using some probability distri-
bution. As Erd&s and Rényi constructed such models of random graphs decades
ago with little data on large networks, their models could not be examined in



depth by empirical tests. Nowadays these models can be finally compared to
natural systems as we now have a plenitude of topological information on huge
complex systems available [BA99a].

3 Measures of graph structure

In practice, natural networks can rarely be accurately modeled by either regular
or random graphs; something in between is required to capture the essential
topologic information. Examples of such networks are neural networks, chemical
bond structures, social and computer networks, or food webs [BW00, ASBS00].
There is a need for a certain degree of randomness, and yet uniformity is not
desired in generation of such network structures.

Several measures can be calculated for a graph to reflect its degree of regularity
or randomness. Among others, the connectivity of a local neighborhood of
a vertex (i.e. how many edges are there between close-by vertices) has been
considered. For a graph of n vertices, there can be at most n(n —1)/2 different
edges between the vertices if every vertex in connected to every other vertex
(a simple combinatorial observation, reflexive edges excluded). For a single
vertex v; and its neighborhood (defined by some measure of “spatial nearness”
between vertices), a clustering coefficient C; can be defined as follows: if v; has ¢;
neighbors, there can exist at most ¢;(¢; —1)/2 edges between v; and its neighbors
I'(v;); the fraction of these edges that are really present in the graph is the local
clustering coefficient C; of the vertex v;. For the entire graph, the clustering
coefficient C is the average over all C;. [BW0O0]

Another such quantity is related to the distance between two nodes v; and
v; calculated as the minimal number of edges d;; that must be traversed to
reach v; from v; (or vice versa; the result is the same for an undirected graph).
Calculating this for each pair of vertices in G and averaging, the characteristic
path length £ of G is obtained. This is a meaningful calculation only when the
graph is connected, i.e. any vertex can be reached by a finite number of edge
traversals from any other vertex. Otherwise the averaging will have to cope with
infinite distances. The connectivity requirement ensures that d; ; is positive and
finite Vi # j [LMO1].

The characteristic path length is thus a global property of the graph, measuring
the typical distance between two vertices, whereas the clustering coeflicient is
a local property, measuring the clustering (i.e. the connectivity of the neigh-
borhood for a vertex). For a regular graph, clustering is high, whereas random
graphs are not clustered. When the system size n grows, the characteristic path
length £ for many regular graphs grows linearly with respect to n, whereas for
a random network the growth is only logarithmic [WS98]. The prozimity ra-
tio u of a graph is defined to be the ratio C/L, normalized by Crand/Lrand i-e-
the respective figures for a completely random graph [Wal99]. This of course
produces u = 1 for random graphs.
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Figure 2: Number of relevant cycles longer than triangles R = |R| — A for three
random graph models to be presented in the next section [GSWF]

Yet another way to characterize the a graph is its degree distribution. For a
regular graph, all vertices have the same degree, and for a random graph, the
distribution depends on the generation method. Also efficiency £ of a graph can
be useful. It measures the efficiency of information exchange over the graph. In
[LMO01], efficiency is defined for unweighted, sparse (m < n(n —1)/2) and con-
nected graphs. The local efficiency of a graph represents how fault tolerant the
graph is, i.e. how efficient the information exchange will be in the neighborhood
of vertex v; if v; itself is removed. In a sense related to fault tolerancy is also
the number of relevant cycles R i.e. paths that start and end in the same vertex
that cross more than three edges. It estimates both the degree of connectivity
and the path length and has been discussed by Gleiss et al. [GSWF]

Hogg [Hog98|] has proposed approzimate entropy as a measure for “similarity
between substructures” [Wal99]. It is calculated from the frequences with which
different substructures appear in the structure at hand. Approximate entropy
essentially measures a similar property of a graph as the clustering coefficient
C. Hogg has studied as examples COLORING and k-SAT.

4 Real-world examples

In the table below , examples of the measures introduced in the previous section
are given for some real-world networks to serve as an example. The clustering
coefficient C and characteristic path length £ have been normalized by the re-
spective figures on random graphs of same size n and average degree k. The
connectivity lengths D (both the local and global version) have also been nor-
malized in the same fashion. The second to last column displays the value of
v for those networks that have been found to obey the power law P(k) = k™7
and “exp” the one that is known to decay exponentially.



To fit the table on the page width, explanations on the networks and references
are explained below separately.

Network cn ‘Cn 13 Dglobal Dlocal 5global glocal Y
IMDB 2925 1.22 2398 1.12  0.001 2.340.1
WSPG 16.00 1.51 10.60 exp
CE 5.60 1.18 4.75 1.01 0.17 0.46  0.47

MBTS 0.14 0.10 0.63  0.03

WwWw 0.18 0.28 0.36 ~ 2.1
Internet 0.29 0.26 2.48

The IMDB network is the film actors’ collaboration network constructed from
the International Movie database (http://www.imdb.com). C and £ have been
calculated for the largest connected component (n = 225226 and k = 6), but
D’s for the entire network [WS98, MLO00, Wat99).

The WSPG network represents the the Western States Power Grid and has
n = 4941 and k = 2.67 [WS98, Str01, Wat99].

The CE network is the neural network of the nematode worm Caenorhabditis

elegans whose neural network is completely known, with n = 282 and k =
14 [WS98, ML00, LMO01, Wat99].

The MBTS network portrays the Massachusetts Bay transportation system with
n = 124 and m = 124; the physical distances between the subway stations have
been taken into account [MLOO].

The WWW network represents a portion of the World Wide Web as docu-
mented at http://www.nd.edu/ networks with n = 325729 documents and
m = 1090108 links (for clust, also a value of 0.3 is given), whereas the In-
ternet’s representative network is constructed according to the database at
http://moat.nlanr.net with n = 6474 and m = 12572 (supposedly the net-
work of domains) [LMO01].

5 Generation methods of non-uniform random graphs

There are two common models for generating uniform random graphs by Erdés
and Rényi (the ER-model). Familiarity with these models is necessary in order
to examine the forthcoming proposals for non-uniform models. In the Gy m
model, the generation process starts with initial n vertices and adds m edges
randomly, by uniform sampling of the n(n — 1)/2 possible edges [Die00, Wal01].

Another approach is not to fix the number of edges in advance, but rather the
probability for an edge to be included in the graph: the G, j, model again starts
with n initial nodes and a fixed probability p for an edge to be included, thereby
obtaining E[m] = p-n(n —1)/2 [WalO1].



Figure 4: An example of a G, graph with n = 16 and p = 1/7 [NWS02]

For Gy, p, the degree distribution P(k) (i.e. the probability for a vertex to have
degree k) is a Poisson distribution P(k) = e *X¥/k!, where A is (n — 1)p, the
expected node degree — thus vertices that have a high degree are unlikely, due
to the exponential decay of the Poisson distribution [Wal01]

5.1 Small-world networks

The class of non-uniform random graphs introduced by Watts and Strogatz [WS98]
has become known as small-world networks (also the WS-model). The rewiring-
procedure for generating such graphs is the following: a ring lattice with n
vertices is taken as the initial structure, with each vertex having degree k = 2h,
h edges on each side connecting the edge to the nearest neighbors both in clock-
wise and counterclockwise direction.

Each vertex is visited in turn, and each of its k edges is randomly “rewired” with
probability p, i.e. the target vertex of the edge is changed to some other vertex



with probability p (excluding vertices that are already directly connected to the
present vertex, as well as the present vertex itself).
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Figure 5: Comparison of ER-graphs (a) and WS-graphs (b) for p = 0 and a
larger p (0.2 for ER and 0.3 for WS) [BAJ99].

For p = 0, the structure remains regular, and for p = 1, all edges are randomly
rewired at one end. It should be noted that even for p = 1, k; > h for all vertices
v, so the resulting network can not be considered a “true” random graph. A
careful mathematical analysis on this observation can be found in [BWO0O].

Regular Small-world Random

Increasing randomness

Figure 6: Rewiring a ring lattice (n = 20 and h = 2) [WS98]

The interesting observation is the behavior of the characteristic path length £
and the clustering coefficient C when p is varied. In order for £ to be mean-
ingfully defined, the resulting graph must be connected; taking k > Inn should
guarantee this [WS98]. Watts and Strogatz [WS98] have observed that over a
broad interval, £(p) = L;ang while C(p) > Crang- The graphs for which this
applies are said to have the small-world property. £(p) drops rapidly even after
a small amount of rewiring, due to the introduction of “shortcuts”, i.e. edges



that “span” further than any of those in the regular lattice, whereas the small
amount of rewiring does not suffice to eliminate the clustering of the regular
lattice. Even a small density of such shortcuts brings the typical separation
distance close to that of random graphs [NMW99].
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Figure 7: Normalized values of C(p) and L(p) for a similar lattice than in Fig-
ure 6 [WS98] with n = 1000 and h =5

The other measures of the previous section can also be used to characterize
the appearance of the small-world property: for small-world graphs pu > 1,
whereas the proximity ratio is smaller for regular graphs and one for random
graphs [Wal99]. Also, graphs that are both locally and globally efficient, possess
the small-world property [LMO1].

It has been shown that small-world behavior is a crossover phenomenon and
not a phase transition [BA99b]. The appearance of the small-world property
is dependent on both the network size (it is not visible in small networks) and
the rewiring probability p. This matter is also discussed in [DMO00], where the
goal is to find a scaling form for £(p,n). Path lengths are also the focus in
[NMW99], where an analytic solution for the distribution of the path lengths
of a small-world graph is found by mean-field approximation (i.e. using average
values to represent distributions).

Another interesting observation is that small-world networks can make search
problems difficult as shortcuts can “mislead” heuristics. Walsh [Wal99] con-
jectures that “exceptionally hard problems will be more common in constraint
satisfaction problems whose constraint graph has a small world topology than
those with a purely random topology”.



6 Alternative approaches

One of the disturbing setbacks with the method of random rewiring by Watts
and Strogatz is that it cannot be easily analyzed. For example, it is not guaran-
teed that the process always produces a connected graph. Gent et al. [GHPW99]
propose another approach for generating small-world networks. Their most com-
prehensive example was to start with a two-way grid of “streets” and little by
little make some of the streets “one-way” at random. It is not a surprise that
this increased the expected length of a route from one place to another ran-
domly selected location. What surprised them at first was that the median cost
of finding an optimal route from one location to another dropped. They expect
this to be the result of reduction in choices to be made.

6.1 Morphing

Gent et al. call the process used for their experiment morphing, which is de-
scribed through three alternative approaches, each intended for “morphing” dif-
ferent kinds of regular structures into more random ones. All types of morphing
begin with two structures S1 and Ss, the first one being a regular structure, and
the second one random (ER-model).

1.0 f@.--

0.75

nw ‘ored Anwixoid

0.5

0.25

0.0001 0.001 0.01 0.1 1
morphing ratio, p

normalized clustering coefficient and characteristic path length

Figure 8: C and £ for graphs (n = 1000, k¥ = 10) generated by morph-
ing [GHPW99]; compare with Figure 9.

In the first and second types of morphing, it is required that these structures
consist of some kind of substructures that can be separated from the original
structures and recombined into a new one. In “type A morph”, substructures are
taken from S; with probability (1 — p) and from Ss with probability p to form
the “randomized” structure (e.g., matrices and SAT instances). In “type B”, a
fraction 1 — p of the new structure is taken from Sj and p from S (e.g., graphs



and sets). In the third morphing type, “type C”, addition and scalar multipli-
cation are expected to be properly defined such that the new structure can be
calculated as (1 —p)-S1 +p- Sz (e.g., vectors and functions).

Thus small-world networks are generated by morphing between e.g., a ring lat-
tice or some other regular, clustered structure, and a true random graph. Gent
et al. state that “the theoretical analysis of morphs is likely to be much easier
than that of rewired graphs” [GHPW99].
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Figure 9: C and £ for graphs (n = 1000, k¥ = 10) generated by random
rewiring [GHPW99] (same than in Figure 7)

They have experimented also with COLORING, the instances being small-world
networks, by encoding the problem into a SAT instance. The conclusion of
the work is that “the distribution of search costs across the test set, as well as
on individual instances, displays a heavy tail” and that a local search performs
poorly on regular structures and well on random ones, whereas a complete search
does quite the opposite [GHPW99.

6.2 Metrical graphs

In addition to being “analytically unapproachable”, the random rewiring method
suffers from heavy limitations set on the graph (undirected, unweighted, con-
nected, sparse etc.), which is why Marchiori and Latora [MLO00] propose another
approach that is applicable for generic metrical graphs, in principle also discon-
nected ones. The vertices of the graph are also defined to have a physical distance
in addition to the distances in the graph d; ;, which is also redefined not to be
the mere “edge count” but instead the minimal sum of physical distances of all
paths connecting vertices v; and v;.
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Marchiori and Latora propose a measure they call connectivity length D to re-
place £ and C used in the WS-model. D can be computed for all metrical graphs
and is said to display the same information as £ and 1/C in characterizing the
locality and globality of the network topology (i.e. small-world networks have
a small D both locally and globally). The connectivity length D portrays the
efficiency of information propagation (the smaller the better), defined through
the separation distances d; ;. Thus D is the amount of separation to which ev-
ery d; j should be set in order to maintain the same performance i.e. the total
amount of information propagated per unit time. The noteworthy point here is
that D of a graph G is not calculated as the arithmetic but the harmonic mean
of the distances d; ; as the graph is not necessarily connected:

n(n —1)

D(G) = H({dij}i,jeq) = m

6.3 Method of preferential attachment

Another serious drawback of the WS-model is that vertices with a high degree
are quite common in real-world graphs, and the WS-model clearly produces a
narrow distribution of vertex degrees. Also in ER-graphs, high-degree vertices
are rare although the degree distribution is not as narrow as for WS-graphs. The
effect that high-degree vertices have on a graph, is that they keep the average
path length short due to their heavy connectivity. [Wal01]
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Figure 10: The degree distribution of ER-model (a G, p graph with n = 10000,
p = 0.0015) [AB02]

A model proposed by Hogg [Hog96] overcomes the degree distribution problem:
vertices are grouped into a binary tree and an ultrametric distance u; ; is defined
for each pair of vertices by calculating the distance up in the tree to the lowest
common ancestor. The relative probability of two vertices v; and v; being
connected by an edge in the graph under construction is p“#i, where p is a fixed
probability. For p = 1, purely random graphs result from this process, and for
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p < 1, hierarchial clustering appears. This procedure generates graphs that have
more vertices of high and low degrees than in traditional random graphs, but
the setback is that they do not have the small-world property, as the clustering
is not sufficiently dense [Hog96, Wal99, Wal01].

A power law model proposed by Barabasi and Albert (the BA-model) overcomes
these difficuleties; it is capable of producing graphs that possess the small-world
property and still contain vertices of a high degree [Wal0l]. It also avoids
another unnatural limitation: the fixed graph size n, is rare in nature but a
basic assumption in the models discussed thus far.

Real-world networks are rarely closed systems, on the contrary the number of
vertices tends to grow in time so some means of growth should be present in
a model that intends to capture the true behavior of real-world systems. Yet
another problem is caused by the assumption inherent in both the ER-~ and the
WS-model is that the probability of two vertices being connected were random
and uniform, whereas in real-world networks, edges are added by the principle
of preferential attachment: a high-degree vertex is more likely to “draw” more
connections than a more isolated one. [BA99a]

Figure 11: Example of an ER-graph and a BA-graph (n = 130, m = 215,
k = 3.3) [AJBOO]

Barabasi and Albert [BA99a] show that the probability that a vertex has degree
k decays as a power law, P(k) =~ k™7, “independent of the system and the
identity of its constituents”, which indicates that the graph will eventually be
organized into a scale-free state. They reach this result by using the following
“attachment probability” to attain preferential attachment: as a new vertex vy,
is added to the system, the probability that an edge (h,%) is added depends on
the magnitude of k; when compared to the overall degree levels:

T(h,i) =

ijj.

12
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Figure 13: £ for random graphs and graphs generated by combining growth and
preferential attachment; k = 4 [ABO02].

Thus the system keeps growing vertex by vertex, exhibiting preferential attach-
ment, and as P(k) is not dependent on the point of time (and therefore not
affected by the system size either), self-organizing into a steady, scale-free state.
Together with Jeong [BAJ99]|, they have also showed that both the element
of growth and the preferential attachment are necessary in order to produce a
scale-free network obeying such a power law, thus behaving like a real-world
system.

13



The BA-model has also be studied by Walsh [Wal01], who studies the cumulative
probability of a vertex having at least degree k:

He proposes a minor modification to the model in order to avoid having the
average degree k bounded by the initial size of the graph. Walsh modifies the
preferential attachment formula to the following, where ¢ is the number of edges
added per each new vertex:

k;
w(h,i) =min< 1,c- .
o =min e L

Walsh states that this modification is “similar to moving from the Gy, to the
G p model of random graphs” [WalO1].
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