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Definitions

Let S be a configuration space.

Let S* denote the set{z € S : f(x) = minyeg f(y)} of global minima.

Let each & € S be assigned a neighbourhood N (z) C S with z ¢ N (z).




Algorithm: Simulated annealing

Given an initial state £op € S and a temperature sequence {7} 7- .
k:=0.
Repeat

Generate a random y € N () by uniform probabilities.

Generate a random number r ~ U(0, 1).

itr < exp (=(f(y) — f(ar))/Tk)

Lk+1 = Y.

Else
Lk+1 = Tk-
End if
k:=k+1.
Until STOP.




Definition. A Markov chain on the state space (2 is a sequence of random variables
X €eQ, k=0,1,... that satisfies

P Xy =z | Xo =20,..., Xp—1 = 21| = P| X} = 21 | Xp—1 = Tp—1]

forallk =1,2,... and all g, x1, ..., 2 € §2.

The transition probabilities Py, (k) := P[X,41 = y | X = ] form a transition matrix
P(k) for each k.

A Markov chain is called homogenous if the transition matrix P (k) does not depend on k.

Otherwise, the chain is called inhomogenous.

A homogenous Markov chain is called irreducible if for any x, y € { there is a positive

probability of reaching y from x in a finite number of trials.

A homogenous Markov chain is called aperiodic if for every state € 2 the greatest
common divisor gcd(D, ) = 1, where D, is the set of all integers n > 0 with positive

probability of returning to state x on step n when starting from x on step 0.




For a given initial state distribution and temperature schedule, the state sequence

o, X1, ... Of the simulated annealing algorithm forms a Markov chain on the configuration

space S.

The transition probabilities are given by

0 ity ¢ N(z) U{z},
A eXp Alﬁv ify € N(x),

_ZQV_
f(z)—f(z . L
Hlﬁmamié exp AI{v ify = x.

\




Theorem. Let P = @a@vaémb be the transition matrix associated with a finite
homogenous Markov chain on state space {2, and suppose that the Markov chain is both

irreducible and aperiodic. Then there exists a unique stationary distribution

Ty = limg_, oo P[ X}, = ], x € £, which is uniquely determined by > ¢ 7, = 1 and

MU TyDye = T forallz € ().
ye

As a consequence of this Theorem, it can be shown that if the neighbourhood relation is
symmetric and the neighbourhood graph is connected, then using a constant temperature

T > 0 the simulated annealing process converges to a unique stationary distribution

(72)zes given by
exp(—f(x)/T)
> yes exp(=f(y)/T)’

As T" — 0, the above stationary distribution approaches the limit distribution Aﬁmvamm for
which 7y = 1/|S*|,x € S*,and ) =0,z € S\ S™.

Ty = x € S.




Definition. A state y € S is reachable at height h from state z € S if x = y and

\.Aav < h, or if there is a sequence of states x = xg, x1,...,Z, = Y for some n such
that zpy1 € N(zg)fork =0,1,...,n—1and f(zg) < hfork=0,1,...,n.
Definition. A simulated annealing process with a fixed cost function is weakly reversible if
forany h € IR and any two states z, y € S, x is reachable at height h from y if and only if
y is reachable at height h from .

Definition. Aset C C S is acup if there is an h € IR such that for every x € C,

C = {y € S : y is reachable at height h from z}.

Definition. The depth d(C') of a cup C'is defined as

d(C) = min{f(y) :y ¢ Candy € N (z)forsome x € C'} — WWH%%A ).

Definition. The bottom of acup C'isthe set{z € C : f(z) = minyec f(y)}.

Definition. The depth of a local minimum x is the smallest d € IR such that some state
y € Swith f(y) < f(x) can be reached from x at height f(x) 4 d, or 400 if no such y

exists.




Theorem (Hajek 1988). Let the temperature schedule Aﬂimono be strictly positive,
nonincreasing and satisfy limy_,~, T = 0. Suppose that weak reversibility holds.
Then

For any state x that is not a local minimum, limy_, ., P[ Xy = z] = 0.

. Suppose that the set of states B is the bottom of a cup of depth d and that the states in
B are local minima of depth d. Then limy_,, P[ X} € B] = 0if and only if

D k1 €xp(=d/T}) = oo.

. (Consequence of 1 and 2.) Let D be the maximum of the depths of all states which are

local but not global minima. Then

lim WTXM c %J =1

k— o0

if and only if

) exp(—D/T}) = oo.
k=0




Corollary. Suppose that the temperature schedule is of the form
C

- log(k + 2)’

where c¢ is constant. Then the simulated annealing algorithm converges asymptotically to

Iy k=0,1,...,

the set S™ of globally optimal states with probability 1 if and only if ¢ > D.

Proof. Suppose ¢ > D. Then

meilb\ﬂwv > mevAlo\ﬂi = mewﬁl_om@ + 2)) MU = 00
k=0 k=0 k=2

k=0
and convergence to S* follows. Now suppose that ¢ < D. Then there is a non-local

minimum Z such that its depth equals D. Since now

& @) . @)

Y exp(—D/Ty) = (exp(—c/Tp)) = wm\n 00,
k=0

k=0 k=2
by part 2 of the Theorem limy,_, o, P[ X € B| > 0 for the bottom B of the cup associated
with Z. O




Kern (1993) has shown that for the problem MAX CUT with the neighbourhood defined by
moving single vertices from one side of the cut to the other side, computing the maximum

depth D of a problem instance is NP-hard.

Also, Kern makes the following conjectures:

Conjecture . Computing the maximum depth is at least as hard as solving the optimization
problem.
Conjecture . Computing the maximum depth is at most as hard as solving the optimization

problem.

Nevertheless, it is often easy to construct more or less tight upper bounds on D.
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Definition. The conductance ® p of a homogenous Markov process with state space 2,
transition matrix P = @a@vﬁ.@mb and stationary balance probabilities 7, £ € €2, is

defined as
DzeA M@mmg TzPzy

dp = min

ACQ: v
Muam> e <1/2 Mamb x

Let @ be the conductance of the simulated annealing process at an infinite temperature (ie.

a random walk on the neighbourhood graph).
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Nolte and Schrader (1996) show the following bound on the finite time behaviour of
simulated annealing using a logarithmic cooling schedule T}, = -/ In(k), and assuming a

symmetric neighbourhood relation.

Theorem. Let J be the difference between the minimal cost and the next to least cost value,
and let p be the difference between the maximal and the minimal values of the cost function.
Then there exist constants ¢, ca € IN such that for an arbitrary ¢ > 0 and

1 (IS P

k >
— P2 €

it holds that

M IP[ X, = 2] — ;| <e.
x€S
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Descent on random landscapes

Let the configuration space S be the set of N-bit strings. Suppose that the costs \A v

x € S, arei.i.d. random variables.

Definition. A random walk on S that proceeds by uniformly choosing a random neighbour,
but then accepting the neighbour only if its cost is less than the cost of the current

configuration, is called an adaptive walk.

Note that qualitatively one may consider even a correlated landscape as uncorrelated, if one
observes walks on the landscape only at intervals longer than the landscape correlation

length.

Flyvbjerg and Lautrup (1992) study the behaviour of adaptive walks on large random

landscapes.

First, they observe that from the point of view of descent methods, instead of the actual

costs it suffices to consider the shared cumulative distribution function of the random costs,

effectively reducing the costs to uniform random variables on (0, 1).
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A heuristic argument
Consider the state of an adaptive walk at a particular configuration.

Assume that adaptive walks are generally much shorter than IV steps, so that the
random step directions chosen during a walk are essentially all different, and on each

step the current configuration has only one neighbour that has been seen before.

On each step of a walk, a new cost value £ is encountered that is otherwise

uncorrelated with the current cost F', except that it is smaller than the current one.

Thus, on average F’ is halved on each step. Starting the walk with F' = 1, after [ steps

the expected cost is 27¢.

An adaptive walk stops when all neighbour configurations have higher cost than the

current configuration. On the average, this occurs when F' ~ H\Z.

Given that I decreases as 27! and the walk stops at a final fitness value F' ~ 1/N,

we have an estimate for the average length L of an adaptive walk: L ~ logy N.
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Flyvbjerg and Lautrup do show somewhat more rigorously that the length L of an adaptive
walk that starts from a configuration with ' = 1 is approximately Poisson-distributed, with
expectation of the form In N + constant + O(1/N) and variance

In N + constant + O(1/N).

Further, they show that the number of configurations tested during such a walk is
1.224 - --- N + O(1) with variance 1.72- - - - N2 + O(N).

In essentially the same model, Macken, Hagan and Perelson (1991) demonstrate similar

results, including the following:

e The cost of a randomly chosen local minimum is 1 /N + o(1/N) with variance
1/N? + o(1/N?).

e The cost of the final state of an adaptive walk is 0.6243 ... /N + o(1/N) with
variance 0.8534 ... /N? + o(1/N?).
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Definition. An N-k landscape is defined on the configuration space S of the set of IV -bit

strings as follows. The moves comprise single-bit flip operations. The cost function is of the

N N
form f(x) = M&HH \@.AR&AS” Ts,(1)s Ls;(2)s - - - T&&Q&Y where s;(j), i =1,..., N,
3 =20,...,k, determines the interactions between bit  and k other bits. The values of the

cost component functions f; are i.i.d. random variables.

We shall assume here that s;(0) = i forall¢ = 1,..., V.

When k£ = 0, the landscape has a unique local (and thus also global) minimum and the

expected length of a downhill walk is IV /2.

When k = N — 1 the landscape is totally random and has O (2 /N') local optima, and

walks to optima are of expected length QQS Zv.
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Weinberger (1991) derives several qualitative results on local optimization on N — k
landscapes with 1 < k < N. Because the results are based on the Central Limit
Theorem, the random values of the cost component functions must be assumed to have

finite mean and variance.

1. The expected number of local minima is O ((2\)?") where
|\ /)

AR | ——
k+1

2. The expected cost of a local minimum is approximately

2In(k + 1)\ /2
k+1

Bw—o

where © and o are respectively the mean and standard deviation of the cost

components.

In(k+1)

4. The average length of an adaptive (first-descent) walk is approximately /V i1
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The expected length of a gradient (steepest-descent) walk is approximately

w.
L A%vp\w where D ~ Nlog,(k+1)/(k+1).

Justification. From the expected number of local minima, it is concluded that the expected
Hamming distance D between local minima (which equals the expected diameter of a basin

of attraction) is asymptotically

MZ
O((2A)"Y)

(CNY + o(N))

(C) — N + Nlogy(A) =~ Nlogy(N).

D = log,

The gradient walk is expected to almost always end up in the nearest local minimum. The
probability that the random initial state is at Hamming distance d from the nearest local

minimum, considering both of the two closest local minima, is approximated as
D D _ o(Dy (1\D—d (1\d
2-(9) /2P =2(5) ()"~ ()

_ 2
,\wmb\g exp Alﬁv MUVH\M exp (—2(d — D/2)?/D).
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The mean Hamming distance from the random start to the chosen optimum can then be

approximated as

D —
D/2

p/2 \wD

|®+@
2 2
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