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D
efinitions

Let�

be
a

configuration
space.

Let���

denote
the

set���
� � ��	 �
��

�
�� � �
�	 �
�

ofglobalm
inim

a.

Leteach�
� �

be
assigned

a
neighbourhood�	 �
��

�

w
ith�

� ��	 �
 .
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A
lgorithm

:
S

im
ulated

annealing

G
iven

an
initialstate�� � �

and
a

tem
perature

sequence�������� �� .
 � �
! .

R
epeatG

enerate
a

random�
��	 �


by
uniform

probabilities.

G
enerate

a
random

num
ber"$#

%	 !&�'
 .
If"( )

*+	-,
	 �	 �
 ,
�	 ��

� ��


��. /
� ��

.

E
lse��. /

� ��� .
E

nd
if

 � �
 0 '

.

U
ntilS

TO
P.
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D
efinition.

A
M

arkov
chain

on
the

state
space 1

is
a

sequence
ofrandom

variables
2� � 1

, �
!&�'&�333

thatsatisfies
45 2� �
��6 2� �
��&�333& 2�87/ �
�� 7/9 �
45 2� �
��6 2� 7/ �
��87/9

for
all �

'&�:&�333
and

all��& �/&�333& �� � 1

.

T
he

transition
probabilities;<� 	  
 � �

45 2�. / �
�
6 2� �
�9

form
a

transition
m

atrix

;	  


for
each 

.

A
M

arkov
chain

is
called

hom
ogenous

ifthe
transition

m
atrix;	  


does
notdepend

on 

.

O
therw

ise,the
chain

is
called

inhom
ogenous.

A
hom

ogenous
M

arkov
chain

is
called

irreducible
iffor

any�&�
� 1

there
is

a
positive

probability
ofreaching�

from�

in
a

finite
num

ber
oftrials.

A
hom

ogenous
M

arkov
chain

is
called

aperiodic
iffor

every
state�

� 1

the
greatest

com
m

on
divisor=�>?

	�@<
 �
'

,w
here@<

is
the

setofallintegersAB !

w
ith

positive

probability
ofreturning

to
state�

on
stepA

w
hen

starting
from�

on
step! .
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F
or

a
given

initialstate
distribution

and
tem

perature
schedule,the

state
sequence

��& �/&�333
ofthe

sim
ulated

annealing
algorithm

form
s

a
M

arkov
chain

on
the

configuration

space�

.

T
he

transition
probabilities

are
given

by

;<� 	  
 �
CDDDEDDDF !

if�
� ��	 �
HG
���� &

/IKJL <MI )
*+N , O
L �M 7O
L <M

PQ
R

if�
��	 �
 &

' ,
/I JL <MITS

U� JL <M ) *+N , O
L UM 7O
L <M

PQ
R

if� �
� 3
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T
heorem

.
Let ; �

	 V <� 
 <W� � X

be
the

transition
m

atrix
associated

w
ith

a
finite

hom
ogenous

M
arkov

chain
on

state
space 1

,and
suppose

thatthe
M

arkov
chain

is
both

irreducible
and

aperiodic.
T

hen
there

exists
a

unique
stationary

distribution

Y< � �
Z�
�[�
45 2� �
�9 ,�
� 1

,w
hich

is
uniquely

determ
ined

byS
<� �
Y< �
'

and

� � X
Y� V� < �
Y<

for
all�

� 13

A
s

a
consequence

ofthis
T

heorem
,itcan

be
show

n
thatifthe

neighbourhood
relation

is

sym
m

etric
and

the
neighbourhood

graph
is

connected,then
using

a
constanttem

perature

�
B !

the
sim

ulated
annealing

process
converges

to
a

unique
stationary

distribution

	 Y<
 <� �

given
by

Y< �
)
*+	 ,�	 �
� �



S
� � �
\�V	 ,
�	 �
� �

 & �

� � 3

A
s�

]
! ,the

above
stationary

distribution
approaches

the
lim

itdistribution	 Y �< 
 <� �

for

w
hichY �< �
'�6 �^�
6 ,�
� �^�

,andY �< �
! ,�
� �_ �^�

.
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D
efinition.

A
state�

� �

is
reachable

atheight`

from
state�

� �

if� �
�

and
�	 �
 a
`

,or
ifthere

is
a

sequence
ofstates� �

��& �/&�333& �b �
�

for
som

eA

such

that��. /
��	 ��


for �
!&�'&�333& A ,'

and�	 ��
 a
`

for �
!&�'&�333& A

.

D
efinition.

A
sim

ulated
annealing

process
w

ith
a

fixed
costfunction

is
w

eakly
reversible

if

for
any`� c

and
any

tw
o

states�&�
� �

,�

is
reachable

atheight`

from�

ifand
only

if

�

is
reachable

atheight`
from�

.

D
efinition.

A
setde �

is
a

cup
ifthere

is
an`� c

such
thatfor

every�
� d

,

d �
� �
� � ��

is
reachable

atheight`

from��

.

D
efinition.

T
he

depthf	 d

ofa

cupd
is

defined
as

f	 d
 �

��� �	 �
 ��
� � d

and�
��	 �


for
som

e�
� d� ,

�
�<� g
�	 �
 3

D
efinition.

T
he

bottom
ofa

cupd

is
the

set���
� d ��	 �
��

�
�� � g
�	 �
�

.

D
efinition.

T
he

depth
ofa

localm
inim

um�

is
the

sm
allestf� c

such
thatsom

e
state

�
� �

w
ith�	 �
 (�	 �


can
be

reached
from�

atheight�	 �
 0 f

,or0 h

ifno
such�

exists.
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T
heorem

(H
ajek

1988).
Letthe

tem
perature

schedule�����i�� ��

be
strictly

positive,

nonincreasing
and

satisfyZ�
�[�
�� �
! .

S
uppose

thatw
eak

reversibility
holds.

T
hen

1.
F

or
any

state�
thatis

nota
localm

inim
um

,Z�
�[�
45 2� �
�9 �
! .

2.
S

uppose
thatthe

setofstates j

is
the

bottom
ofa

cup
ofdepthf

and
thatthe

states
in

j

are
localm

inim
a

ofdepthf

.
T

hen Z�
�[�
45 2� � j9 �
!

ifand
only

if

S �� �/ )
*+	 ,f� ��
 �h
.

3.
(C

onsequence
of1

and
2.)

Letk
be

the
m

axim
um

ofthe
depths

ofallstates
w

hich
are

localbutnotglobalm
inim

a.
T

henZ�
�[�
45 2� � �l�9 �
'

ifand
only

if

�� �� )
*+	 ,k� ��
��h
3
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C
orollary.

S
uppose

thatthe
tem

perature
schedule

is
ofthe

form

�� �

m
Zn=	  0 :
 &
 �
!&�'&�333&

w
herem

is
constant.

T
hen

the
sim

ulated
annealing

algorithm
converges

asym
ptotically

to

the
set�^�

ofglobally
optim

alstates
w

ith
probability

1
ifand

only
ifmo k

.

P
roof.

S
upposemo k

.
T

hen

�� �� )
*+	 ,k� ��
 o �� �� )
*+	 ,m� ��
 �

�� �� )
*+	 ,
Zn=	  0 :

��

�� �p ' �h

and
convergence

to���

follow
s.

N
ow

suppose
thatm( k

.
T

hen
there

is
a

non-local

m
inim

um q�

such
thatits

depth
equalsk

.
S

ince
now

�� �� )
*+	 ,k� ��
 �

�� �� 	 ) *+	 ,m� ��

irs8t�
�� �p ' rs8t

( h
&

by
part2

ofthe
T

heoremZ�
�[�
45 2� � j9 B !

for
the

bottomj

ofthe
cup

associated

w
ith q�

.
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K
ern

(1993)
has

show
n

thatfor
the

problem
M

A
X

C
U

T
w

ith
the

neighbourhood
defined

by

m
oving

single
vertices

from
one

side
ofthe

cutto
the

other
side,com

puting
the

m
axim

um

depthk

ofa
problem

instance
is

N
P

-hard.

A
lso,K

ern
m

akes
the

follow
ing

conjectures:

C
onjecture

.
C

om
puting

the
m

axim
um

depth
is

atleastas
hard

as
solving

the
optim

ization

problem
.

C
onjecture

.
C

om
puting

the
m

axim
um

depth
is

atm
ostas

hard
as

solving
the

optim
ization

problem
.

N
evertheless,itis

often
easy

to
constructm

ore
or

less
tightupper

bounds
onk

.
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D
efinition.

T
he

conductanceuv

ofa
hom

ogenous
M

arkov
process

w
ith

state
space1

,

transition
m

atrix; �
	 V <� 
 <W� � X

and
stationary

balance
probabilitiesY< ,�

� 1

,is

defined
as

uv �


�
�

wx X
y

z{| }�~
{� /s p S

<� w S
� � �
� w Y<V <�

S
<� w Y<

Let u

be
the

conductance
ofthe

sim
ulated

annealing
process

atan
infinite

tem
perature

(ie.

a
random

w
alk

on
the

neighbourhood
graph).11



N
olte

and
S

chrader
(1996)

show
the

follow
ing

bound
on

the
finite

tim
e

behaviour
of

sim
ulated

annealing
using

a
logarithm

ic
cooling

schedule �� �
�� Z�	  
 ,and

assum
ing

a

sym
m

etric
neighbourhood

relation.

T
heorem

.
Let�

be
the

difference
betw

een
the

m
inim

alcostand
the

nextto
leastcostvalue,

and
let�

be
the

difference
betw

een
the

m
axim

aland
the

m
inim

alvalues
ofthe

costfunction.

T
hen

there
existconstantsm/& mp � �

such
thatfor

an
arbitrary�B !

and

 o
'u t�
6 �6�

7t��s8�

itholds
that

<� �
6 45 2� �
�9 ,
Y �<6 a
� 3
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D
escenton

random
landscapes

Letthe
configuration

space�

be
the

setof�

-bitstrings.
S

uppose
thatthe

costs�	 �
 ,
�
� �

,are
i.i.d.

random
variables.

D
efinition.

A
random

w
alk

on�

thatproceeds
by

uniform
ly

choosing
a

random
neighbour,

butthen
accepting

the
neighbour

only
ifits

costis
less

than
the

costofthe
current

configuration,is
called

an
adaptive

w
alk.

N
ote

thatqualitatively
one

m
ay

consider
even

a
correlated

landscape
as

uncorrelated,ifone

observes
w

alks
on

the
landscape

only
atintervals

longer
than

the
landscape

correlation

length.

F
lyvbjerg

and
Lautrup

(1992)
study

the
behaviour

ofadaptive
w

alks
on

large
random

landscapes.

F
irst,they

observe
thatfrom

the
pointofview

ofdescentm
ethods,instead

ofthe
actual

costs
itsuffices

to
consider

the
shared

cum
ulative

distribution
function

ofthe
random

costs,

effectively
reducing

the
costs

to
uniform

random
variables

on	 !&�'
 .
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A
heuristic

argum
ent
�

C
onsider

the
state

ofan
adaptive

w
alk

ata
particular

configuration.

�

A
ssum

e
thatadaptive

w
alks

are
generally

m
uch

shorter
than�

steps,so
thatthe

random
step

directions
chosen

during
a

w
alk

are
essentially

alldifferent,and
on

each

step
the

currentconfiguration
has

only
one

neighbour
thathas

been
seen

before.

�

O
n

each
step

ofa
w

alk,a
new

costvalue ���

is
encountered

thatis
otherw

ise

uncorrelated
w

ith
the

currentcost �

,exceptthatitis
sm

aller
than

the
currentone.

�

T
hus,on

average�

is
halved

on
each

step.
S

tarting
the

w
alk

w
ith� �

'

,after�

steps

the
expected

costis: 7�.

�

A
n

adaptive
w

alk
stops

w
hen

allneighbour
configurations

have
higher

costthan
the

currentconfiguration.
O

n
the

average,this
occurs

w
hen� #

'� �

.

�

G
iven

that �

decreases
as : 7�

and
the

w
alk

stops
ata

finalfitness
value � #

'� �

,

w
e

have
an

estim
ate

for
the

average
length �

ofan
adaptive

w
alk: � �

Zn=p �

.
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F
lyvbjerg

and
Lautrup

do
show

som
ew

hatm
ore

rigorously
thatthe

length�

ofan
adaptive

w
alk

thatstarts
from

a
configuration

w
ith� �

'

is
approxim

ately
P

oisson-distributed,w
ith

expectation
ofthe

formZ��
0 >n ����
��0 �
	 '� �


and
variance

Z��
0 >n ����
��0 �
	 '� �
 .

F
urther,they

show
thatthe

num
ber

ofconfigurations
tested

during
such

a
w

alk
is

'3::�
�����
0 �
	 '


w
ith

variance '3� :
����� p0 �

	 �
 .
In

essentially
the

sam
e

m
odel,M

acken,H
agan

and
P

erelson
(1991)

dem
onstrate

sim
ilar

results,including
the

follow
ing:

�

T
he

costofa
random

ly
chosen

localm
inim

um
is '� �

0 �
	 '� �


w
ith

variance

'� � p0 �
	 '� � p
 .

�

T
he

costofthe
finalstate

ofan
adaptive

w
alk

is! 3� :�
� 333� �
0 �
	 '� �


w
ith

variance! 3��� �333� � p0 �
	 '� � p
 .
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D
efinition.

A
n

N
-k

landscape
is

defined
on

the
configuration

space�

ofthe
setof �

-bit

strings
as

follow
s.

T
he

m
oves

com
prise

single-bitflip
operations.

T
he

costfunction
is

ofthe

form�	 �
��
S

 ¡ �/
� ¡	 �¢£L �M & �¢£L /M & �¢£L pM &�333& �¢£L �M 
 ,w

here¤¡	 ¥
 ,¦ �
'&�333& �

,

¥ �
!&�333&  

,determ
ines

the
interactions

betw
een

bit¦

and 

other
bits.

T
he

values
ofthe

costcom
ponentfunctions� ¡

are
i.i.d.

random
variables.

W
e

shallassum
e

here
that¤¡	 !
��

¦
for

all¦ �
'&�333& �

.

W
hen �

! ,the
landscape

has
a

unique
local(and

thus
also

global)
m

inim
um

and
the

expected
length

ofa
dow

nhillw
alk

is�� :
.

W
hen �

� ,'

the
landscape

is
totally

random
and

has�
	 :  � �


localoptim
a,and

w
alks

to
optim

a
are

ofexpected
length�

	 Z��
 .
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W
einberger

(1991)
derives

severalqualitative
results

on
localoptim

ization
on� ,

 

landscapes
w

ith'
§
 §
�

.
B

ecause
the

results
are

based
on

the
C

entralLim
it

T
heorem

,the
random

values
ofthe

costcom
ponentfunctions

m
ustbe

assum
ed

to
have

finite
m

ean
and

variance.

1.
T

he
expected

num
ber

oflocalm
inim

a
is�

		 :¨
  


w
here

¨ �

' 0 '
/s L �. /M3

2.
T

he
expected

costofa
localm

inim
um

is
approxim

ately
© ,
ª
:Z�	  0 '


 0 '
/s p

w
here©

andª

are
respectively

the
m

ean
and

standard
deviation

ofthe
cost

com
ponents.

4.
T

he
average

length
ofan

adaptive
(first-descent)

w
alk

is
approxim

ately�¬«­
L �. /M

�. /

.
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3.
T

he
expected

length
ofa

gradient(steepest-descent)
w

alk
is

approxim
ately

rp ,
® rp~ ¯ /s p

w
here k �

�Zn=p	  0 '
�	  0 '
 .
Justification.

From
the

expected
num

ber
oflocalm

inim
a,itis

concluded
thatthe

expected

H
am

m
ing

distancek
betw

een
localm

inim
a

(w
hich

equals
the

expected
diam

eter
ofa

basin

ofattraction)
is

asym
ptotically

k �
Zn=p
:  

�
		 :¨
  
 �

� ,
Zn=p® d	 :¨
  0 �
	 �
¯

�
� ,
Zn=p	 d
 ,
�
0 �Zn=p	 ¨
 �
�Zn=p	 ¨
 3

T
he

gradientw
alk

is
expected

to
alm

ostalw
ays

end
up

in
the

nearestlocalm
inim

um
.

T
he

probability
thatthe

random
initialstate

is
atH

am
m

ing
distancef

from
the

nearestlocal

m
inim

um
,considering

both
ofthe

tw
o

closestlocalm
inim

a,is
approxim

ated
as

:
�® r° ¯ : r�
:® r° ¯® /p¯ r 7°® /p¯ °

�
:
/± p~ rs³² )

*+N ,
L ° 7rs pM �

pµ´rs³²
R �
®·¶~
r
¯ /s p)
*+® ,:	 f ,
k� :
 p� k¯ .
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T
he

m
ean

H
am

m
ing

distance
from

the
random

startto
the

chosen
optim

um
can

then
be

approxim
ated

as
k ,

�rs p "
�Y k /s p)

*+® ,:	 " ,
k� :
 p� k¯ f"

�
k0 : k�

�rs p , �k "0 :
:Y k /s p)

*+® ,:	 " ,
k� :
 p� k¯ f"

,: k�
: �rs p
:Y k /s p)

*+® ,:	 " ,
k� :
 p� k¯ f"

�
k0 : k�
�¹¸¸¸ �rs p
:Y k /s p)

*+® ,:	 " ,
k� :
 p� k¯ ,
k
� ':

�
k:

0 k:
! ,

:Y k /s p�
k: ,
k:Y /s p3
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