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Phases and transitions

e Liquid-gas transition
— at T, coexistence of liquid and gas phases
— jump in order parameter Ap

— first-order phase transition

e Ferromagnetic-paramagnetic transition

— at T, no phase coexistence

— order parameter (magnetization) changes continuously

— second-order phase transition
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Random K-SAT

N boolean variables z;, 1 =1,.... N

Clauses C' are formed of K randomly chosen variables, each of
them negated with probability 1/2

M = aN independently drawn random clauses C
2-SAT exhibits phase transition at a.(K = 2) = 1 (exact value)

Py (a, K) — prob. to find satisfying set of z;
— Py — 1 for a < a.(K)
— Py — 0 for a > a.(K) when N — oo

For low values of a the problem is underconstrained and for high

values overconstrained.
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e A sat-unsat threshold exists for any value of K.

e Its exact location is a difficult open problem.

e For characteristic heuristic search ’easy-hard-easy’ pattern in
computational costs:
— low values of a — easy to find satisfying assignment

— « close to a, — difficult to find satistying assignment or show
unsatisfiability

— a > a. exponential in NV with a coefficient of NV decreasing as

a power law in a (K > 2)

e Tools for analytical studies from statistical physics.
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OPTIMIZATION STATISTICAL PHYSICS
instance sample

cost function energy

optimal configuration ground state

minimal cost ground state energy
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Partition function
e The system is in configuration C' with probability p(C')

1 1

p(C) =  exp (- 1E(C)

where E' is the energy and Z is the partition function

7 = MQU@% A|wm6vv
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Replica method

Consider a generic model with NV spins o; and an energy function

E(C,J) depending on a set of random couplings J

Assume that F'(J) is self-averaging and we want to calculate its

quenched average value F'(J).

Computation of In Z(J) is a very hard task

— use replica method

Start with the following expansion, valid for any J and small n:

Z()" =14+nlnZ(J)+ O(n?)
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e Now the problem is to find the following limit

F(J) = —T lim 2" 1

n—0 n

e If we restrict to integer n

S exp (—E(C, J)/T) S exp wMUE%S

C Ct,.Cn

e We have n copies, or replicas, of the initial problem.
e Random couplings disappear after averiging.

e We end up in computing the partition function of a system of N

Lo o).

vectorial spins ¢; = (o :
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e To leading order in IV, n'" moment of Z can be written as

Z(J)" = exp(=Nf(n)/T)

where f(n) correspnds to the extremum of a functional
optimization problem, solution of which can be saught in

so-called replica symmetric (RS) subspace.

e At the final step one performs the analytic continuation n — 0.
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K-SAT energy and partition function

Map boolean variables x; to spins .5;
S; = +1 if x; =true
S; = —1 1if x; =false

Map random clauses into M x N matrix Cy;
. = —1 if ] includes z;
, = +1 it C; includes z;

C1; = 0 otherwise

MUMMH C1;S; = wrong literals in clause [

Cost-function E[C, S| defined as number of literals that not

satisfied
M

N
E[C,S] = M% MQ:%@. + K

=1 1=1
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The minimum (or ground state) E|C] is a random variable that

concentrates around Fgg = E[C] as N — o
Eas = 0 in sat region and Egg > 0 in unsat region.

The knowledge of Eggs as a function of « determines a.(K).

Egs = —Tlog Z[C] + O(T?)

when T — 0 and where

Z|C] = MU exp(—F[C,S]|/T)
S

Fgs can be found with the replica method.
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Define average of spin S; over all ground state configurations

Clearly —1 < m; < +1.

m; = —1 means that the corresponding x; is always false in all

ground states

m; = +1 means that the corresponding z; is always true in all
ground states
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The distribution P(m) of all m; describes the microscopic
structure of the ground state.

P(m = +1) represents a 'backbone’ of completely constrained
variables.

P(m =~ 0) describes weakly constrained variables.

If the RS solution is global optimum of the problem arising in
finding f(n), the solution of this problem is P(m)

Replica symmetric solution leads to an order parameter which is

precisely P(m).
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Sat phase

The typical number of solutions can be obtained from the ground

state entropy density sgg(a).
sgs(@=0)=n2 (F=FE—ST, S(E) =IlnN(E) )

From Taylor expansion of sgg around o = O:
sas(a. = 1) = 0.38 for 2-SAT and
sags(a =4.2) = 0.1 for 3-SAT

Solutions are exponentially numerous.

The RS calculations are belived to be exact at low « ratios.

According to analytical (and numerical) calculations for 3-SAT

the RS theory breaks down at arsp < ae.

At argp the solutions start to be organized into distinct clusters.
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The space of N spins configuration — the N-dimensional
hypercube.

Optimal solutions are a subset of 2%V vertices of the hypercube.

RS assumes that any pair of vertices are separated by the same
Hamming distance d — the fraction of distinct spins. Solutions

are in a single cluster of diameter d.N.

This holds for a < agrsp where solutions are characterized by a
single P(m).

At arsp ~ 4.0 the space of solutions breaks into a large number

(polynomial in N) of diffrent clusters.

— space of solutions has a highly organized structure
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Unsat phase
It is expected that O(IV) variables become totally constrained.

P(m) develops Dirac peaks at m = +1.

Taking into account this effect RS gives a.(2) = 1 correctly.

ac(3) >~ 4.6 is slightly larger than the value from numerical
simulations a.(3) ~ 4.25.

The RS theory provides an upper bound for the thresholds for
any K > 2.
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Abrupt vs. smooth phase transition

An qualitative difference between 2-SAT and 3-SAT is the way
P(m) changes at the threshold.

This discrepancy can be seen in the fraction v(K, a) of boolean
variables that become fully constrained, at and above the

threshold.

v(K, a) is directly computable in the RS theory.

v(K, ) vanishes in the sat region.

Two kinds of scenarii when entering the unsat region:
1. For 2-SAT ~(2, ) smoothly increases above the threshold.

2. For 3-SAT ~(3, ) has a discontinuous jump to a finite value
v. slightly above the threshold.
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(24 p)-SAT model

A mixed model, which continuously interpolates between 2-SAT
and 3-SAT.

A fraction p (resp. 1 — p) clauses of length three (resp. two).

p = 0 corresponds to 2-SAT and p = 1 to 3-SAT.
The sat-unsat transition becomes abrupt when p > pg ~ 0.4.
When p < pg the transition is smooth.

For p < po (2 + p)-SAT shares the physical features of 2-SAT
problem and for p > pg of 3-SAT.
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Scaling of computational costs

e Numerical experiments: easy-hard-easy pattern for the typical
search cost with a peak of complexity close to a..

e The peak scales polynomially with N for 2-SAT and
exponentially with IV for 3-SAT.

e This suggests the connection between the nature of the phase

transition and the computational costs.




Tik-79.300 / Phase transitions in optimization problems

1-in-K SAT

Exact location of threshold for K > 3 at a1 g = H\Am«v

However, there is no jump in phase transition.

NAE 3-SAT

NAE caluse (a, b, ¢) is equvalent to (a VbV ec)A(aVbV )

According to numerical experiments it seems that:
2 % Qnﬁwvzkm:w — Qoﬁwvm\»ﬂ
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NK landscapes

An NK landscape f(z) =>_"_; fi(x;, 1I(z;)), where n > 0 and
r=(x1,...,2,) € {0,1}"

fi local fitness function

neighbourhood of z;: II(x;) C {z1,..., 2, }\{z;}

Main parameters: n and k = |II(x;)|

Consider the random neighbourhood where the k variables are

chosen randomly from the set {z1,..., 2, }\{x:}.

'Is the optimum of f(x) equal to n?’ is NP-complete for k > 2.
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NK landscapes with random neighbourhoods

e In the uniform probability model N(n,k,p) fi(y) = 0 with
probability pand f;(y) = 1 with probability 1 — p, where
y € Dom(f;) = {0,1}F*1,

e The fixed ratio model N(n, k, z): the parameter z takes on values
from [0, 28 1],

— z is integer: z tuples of possible assignments Y = (y1,...,4.)
from Dom(f;) = {0,1}*T1 and defining f;(y) =0if y € Y,
fi(y) = 1 otherwise.

— non-integer z = (1 — «)[2] + a|z + 1] choose randomly
[(1 — a)n] local fitness functions and determine their values
according to N(n,k, [z]). The rest of f; according to
N(n,k,[z] +1).
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The uniform probability model:

k+1
nl/(2

) exists, k fixed, there is

For any p(n) such that lim,, p(n)
a polynomial algrithm that finds solution with probability

asymptotic to 1 as n — oo.

If p does not decrease very quickly with n, then asymptotically
there will be at least one f; = 0, making the whole decision
problem insoluble.

The fixed ratio model:
Upper bounds for insolubility z > 3 and z > 2.837.
Polynomial algorthims also for the insoluble phase.

Experiments: the poblem is also easy around and below the
threshold.

— 1s this 'smooth’ transition?




