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1 Introduction

A common everyday example of a phase transition is the melting of a solid
with increasing temperature. As temperature increases the atomic vibrations
increase gradually. At the phase transition (that is melting) there is a sudden
change in the properties of the substance leading to the appearance of a
qualitatively different phase — a liquid.

Similar behaviour has been also observed in computational problems. While
we slowly vary a control parameter of the problem a sharp transition may
occur in the solvability. One can also observe the change in the average
computational complexity. There appears an ’easy-hard-easy’ pattern in the
average complexity as a function of the control parameter. These similari-
ties motivate to tackle computational problems with the tools of statistical
physics. One can draw a table of the equivalences between two languages:

OPTIMIZATION STATISTICAL PHYSICS

instance sample
cost function energy
optimal configuration ground state
minimal cost ground state energy

In this paper we describe the analysis of the K-SAT problem including the
replica method. We discuss the properties of the solutions and how these



are related to the sat/unsat transition. The analysis of the K-SAT problem
is based on [1]. In addition we briefly discuss the threshold behaviour of
random NK landscapes.

2 Statistical physics and the replica method

When the system is in equilibrium it will be in configuration C' with proba-
bility p(C):

§(C) = 5 exp (~1E(C)) )

where E(C) is the energy corresponding to configuration C' and the normal-
ization factor Z is the partition function

Z=Fex (—%E(C)) 2)

Knowing the partition function allows us to calculate the free energy of the

system:
F(T)=-TnZ(T) (3)

For a mechanically isolated systems kept at constant temperature the state of
equilibrium is the state of minimum free energy. Thermodynamic equilibrium
prevails when the thermodynamic state (configuration) of the system does
not change with time.

Consider a generic model with N spins o; and energy function E(C,J) de-
pending on random couplings J. In addition, assume that the free-energy
F(J) of this model is self-averaging ' and one would like to compute its

quenched averaged value F'(J). That is, first calculate F' for each randomly
drawn J and then calculate the average. According to (3) we need to calculate

In Z(J). Its computation is generally a very hard task from the analytic point
of view. However, this can be done with the non-rigorous replica method.
Start by writing the Taylor expansion of Z" with respect to n (recall that
% =7Z"InZ):

Z(N)"=1+nlnZ(J)+ O(n?). (4)

! The distributions of some random variables become highly concentrated as the size of
the system grows. This is self-averaging.




This is valid for any set of couplings J and small real n. Now insert In Z(J) =
(Z(J)™—1)/n into (3) and in order to get ride of n take the limit as n — 0:

F(J) = -Tlim <@> (5)

n—0 n

If we restrict to integer n, the n'® moment of the partition function Z can
be written as

Z)" = Zexp(_E(c,J)/T)] = Y exp (%z:E(ca,J)) (6)

C Cct,...c»

In the rightmost expression we have n copies, or replicas, of the initial prob-
lem. The random couplings disappear once the average over the quenched
couplings has been carried out. Finally, we must compute the partition func-
tion of an abstract system of N vectorial spins &; = (0}, ...,0") with the non
random energy function

Eerr({0i}) = —T'In

exp <_% S E(C, J))] (7)

a=1

The corresponding partition function Z(J)" = 3z, exp(—Eesr({0i})/T)
can be estimated analytically in some cases by means of the saddle-point
method. The result may be written formally as

Z(J)" = exp(~=Nf(n)/T) (8)

to leading order in N where f(n) is a function of integer n satisfying £(0) =0.
Now, continue analytically f to the set of real n and obtain F'(J) = TNdf/dn
2 evaluated at n = 0.

3 Random K-SAT

A random version of the K-SAT problem is defined as follows. Consider
N boolean variables z;, 1 = 1,..., N. Clauses C are formed of K randomly

2Using (5) one gets

_ ~NF(n) _ ~NF(0) de—NFm
F(J):—Tlin})e ne S edn
n—




chosen variables, each of them negated with probability 1/2. This is repeated
by drawing independently M random clauses Cj, [ = 1,..., M. In numerical
experiments it has been studied the probability Py(«, K) that a randomly
chosen formula having M = aN clauses is satisfiable. For N — oo, Py — 1
for @ < a(K) and Py — 0 for o > a(K). For K = 2 there is a known exact
result «.(2) = 1[2, 3] , whereas for K = 3 there are only estimatas. From
numerical studies one has «,(3) ~ 4.3[4]. It has been observed numerically
that hard random instances are generated when the problems are close to
the sat/unsat phase boundary.

3.1 Application of methods of statistical physics

To apply the statistical physics approach one has to identify the energy func-
tion corresponding to the K-SAT problem. Consider a K-SAT problem in-
stance with M random clauses C; and with N Boolean variables x;.

First, map the Boolean variables x; to the spin variables S;:

S; = +1 ifz;is true
S; = =1 ifzx;is false 9)

The random clauses can be encoded into an M x N matrix C}; in the following
way:

Cu = 41 if the clause C} includes z;
C;; = —1 if the clause C) includes T;
Cii = 0  otherwise (10)

One can check that Ef\il Cy;S; equals to —K if all literals have a wrong 3
assignment in clause [. The cost-function E[C,S] is defined as the number
of clauses that are not satisfied by the logical assignment corresponding to
configuration S:

E[C,S| = é 5 (é CiSi + K) , (11)

where §() denotes the Kronecker delta function. The minimum E[C] of
E[C, 8] is the lowest number of unsatisfied clauses that can be achieved by

3For example with z; = T, 2o = T and 3 = F in (z; VT3 V 73), 72 and z3 have
'wrong’ assignments.



the best possible logical assignment. FE[C] is a random variable (because
C’s are random) that becomes highly concentrated around its average value
Egs = E[C] as N — oo % Since Egg is the minimal number of violated
clauses averaged over all C, Egs = 0 in the sat region and Egg > 0 in the
unsat phase. The knowledge of Egs as a function of o therefore determines
the threshold ratio a.(K). Egg can be calculated by statistical physics means
from

Egs = —Tln Z(C) + O(T?) (12)

when the auxiliary parameter 7" is sent to zero. As in the previous section:
1
Z =) exp (—?E[C, S]) . (13)
S

In calculating of Egg one applies the replica method by exploiting (4). By
replicating n times the sum over the spin configurations S and averaging over
the clause distribution one obtains:

Z[Cl"= > exp (- Zn:lE[C, Sa]/T> (14)

Si,..,Sn

The averaged term in the r.h.s. of (14) depends on the n x N spin values
only through the 2" occupation fractions x(&) labeled by the vectors & with
n binary components; z(&) equals the number (divided by N) of labels ¢ such
that S¢ = 0%, Va = 1, ...,n. It follows that x — {S®}. To leading order in N
the n® moment of Z can be written as

Z[C]" ~ exp(—N fopt/T') (15)

where fo, is the optimum over all possible xs of the functional f[x] [5]. fop
can also be interpreted as a free-energy density, since from (15) one gets
fot N =~ =T In Z[C]".

The optimization conditions over f[x] gives 2" coupled equations for xs. In
this case f is a symmetric functional [5], invariant under any permutation of
replicas. The optimum may thus be sought in the so-called replica symmetric
(RS) subspace. In the limit 7" — 0 and with the RS subspace, the occupation
fractions may by expressed as the moments of a probability density P(m)
over the range —1 < m < 1 [5]. In the limit n — 0 P(m) is the probability
density of the expectation values of the spin variables over the set of ground
states. Consider all the spin configurations SU), j = 1,...,Q realizing the

4That is, E[C] is self-averaging. GS stands for ’ground state’



minimum E|[C] of the cost-function E[CS]| of the MAX-SAT problem. Define
the average magnetizations of the spins over the set of optimal configurations:

18
Q=

Call H(C,m) the histogram of the m;s and H(m) its quenched average.
H(m) is a probability density over the interval —1 < m < 1. H(m =~ 0)
corresponds to weakly constrained variables and H(m = +1) represents a
"backbone’ of completely constrained variables, i.e. variables that have the
same value in all ground state configurations. If the RS solution is the global
optimum of f(x) then H(m) equals to P(m) in the limit N — oo [5].

3.2 Sat phase

The typical number of solutions can be obtained from the ground state en-
tropy density sgs(a) ® that is given by —f,,:/T in the T — 0 limit. If
there are no clauses all assignments are solutions: sgs(a = 0) = In2. It
has been computed [6] the Taylor expansion of sgg(«) in the vicinity of
a = 0. Results are shown in Figure 1. It is found that sgg(a. = 1) = 0.38
and sgs(a. = 4.2) = 0.1 for 2-SAT and 3-SAT respectively. The fact that
sgs = const. > 0 just below the threshold means there are exponentially
many solutions as a function of N (sgsN = In#).

The RS calculations are believed to be exact at low « ratios. According
to analytical and numerical calculations for 3-SAT [7] the RS theory breaks
down at a definite ratio agsp < ., where the solutions start to be organized
into distinct clusters (RSB — replica symmetry breaking). Consider the space
of N-spin configurations as the 2V vertices on the N-dimensional hyper cube.
Optimal assignments are a subset of the vertices. Effectively RS assumes that
any pair of vertices are separated by the same Hamming distance d, defined
as the fraction of distinct spins in the corresponding configurations. Solutions
are in a single cluster of diameter Nd. This holds for o < agps, where the
space of solutions is replica symmetric and the solutions are characterized
by a single probability distribution of local magnetizations. At arsp ~ 4.0,
the space of solutions breaks into a large number of different clusters. Now
there are two typical Hamming distances: the distance between solutions

5The entropy S = Log of the number of configurations which contribute at a fixed
energy. On the other hand F = E — TS, now the internal energy E = 0.



Figure 1: RS estimate for the entropy density (Y-axis) in random 2-SAT and
3-SAT (bold lines). The dots represent the results of exact enumeration in
small systems (N = 20...30 ) [6].
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Figure 2: d is the typical Hamming distance between solutions. The splitting
of curves at a ~ 4 corresponds to clustering.

belonging to different clusters and the intra-cluster distance. Figure 2 [1]
shows qualitatively the clustering process. Thus, the space of solutions has
a highly organized structure even in the sat phase.

3.3 Unsat phase

It is expected that O(/N) variables become totally constrained in the unsat
phase. This hypothesis corresponds to a structural change in the probability
distribution P(m) which develops Dirac peaks at m = +1. In the limit
T — 0 this is taken into account by introducing a new variable z, defined
by the relation m = tanh(z/T). Instead of P(m) now one works with the
probability density R(z) and can calculate the corresponding ground state
energy density egs. The location of the sat/unsat threshold can be obtained
for any K by looking at the value o beyond which egg becomes positive.
For K = 2 one obtains correctly a.(2) = 1, for K = 3 «,(3) ~ 4.6 which is
slightly higher that the value estimated by numerical simulations a.(3) ~ 4.3
[4]. The RS theory provides an upper bound for the thresholds for any K > 2.



3.4 Nature of the phase transition

An qualitative difference between the sat/unsat transitions in 2-SAT and 3-
SAT is the way P(m) changes at the threshold. Instead of studying P(m)
itself let us consider the fraction of the fully constrained variables v(c, K)
which is directly computable in the RS theory. Clearly, v(«, K) wanishes in
the sat region both for K = 2 and K = 3. Two kinds of scenarios have been
found when entering the unsat phase. For 2-SAT, v(«, 2) changes smoothly,
whereas for 3-SAT (and more generally K > 3), v(«, 3) has a discontinuous
jump to a finite value ~, slightly above the threshold. Thus, one can say
that for 2-SAT the phase transition is of the second order and for K > 3
of the first order. The RS theory gives 7.(K = 3) ~ 0.94. Subtracting the
terms in P(m) which appear to be splitting away from m = +1 reduces that
to an estimated 7.(3) ~ 0.6 in an approximation beyond replica symmetry,
while experiments give 7.(3) ~ 0.4. Figure 3 presents numerical results which
however are not very supportive due to relatively small N. It is interesting
to notice that the phase transition is continuous in the entropy [6] as one
can also see from the numerical data of Figure 2. This means that while an
extensive number of degrees of freedom freeze at the transition, forming the
backbone, the remaining ones can support critical fluctuations.

3.5 The random 2 + p-SAT model

To understand the onset of exponential complexity that occurs when going
from a problem in P (2-SAT) to a problem that is NP-complete (3-SAT), it
has been introduced a mixed model which continuously interpolates between
2-SAT and 3-SAT [8]. Consider a random formula with M clauses, of which
fraction (1 — p) contains two variables and fraction p three variables. p = 0
corresponds to the pure 2-SAT and p = 1 to the 3-SAT problem. In [8] it
has been studied how the nature of the sat/unsat transition changes with p.

Using the replica method it has been found a continuous transition at o.(2+
p) =1/(1—p) for p < py, where py ~ 0.4. For p > py, the transition becomes
discontinuous and the replica symmetric transition can only provide an upper
bound for the true a.(2+p). The RS theory predicts correctly a discontinuous
appearance of a finite fraction of fully constrained variables which jumps from
0 to 7. when crossing the threshold «.(2 + p). However, the values of both
7.(2 + p) and «, are overestimated as in the 3-SAT case.
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Figure 3: Numerical estimates of the value of the backbone order parameter
in 2-SAT and 3-SAT. The data is from systems of sizes up to N = 500
variables for 2-SAT and N = 30 for 3-SAT.

4 Connection between computational complex-
ity and phase transitions

The analytical and numerical results of K-SAT problem presented in the
previous secction suggest that there is a connection between the order of the
phase transition and the complexity of the computational problem. However,
the recent results [9] give a counterexample to this interpretation. For 1-in-K
SAT, K> 3, (NP-complete problem) it has been obtained the exact location
of the threshold o (1 —in — K) = 1/(12() In addition, it turns out that ~y
behaves continouusly at the threshold. This means that there is no direct
connection between the order of phase transitions and computational costs.
It would be interesting to compare also the behaviour of the entropy. Would
it also be continuous as for K-SAT?
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5 NK landscapes

In [10] it has been analyzed two random models for the decision problem
of NK landscapes from the perspective of threshold phenomena and phase
transitions. An NK landscape f(z) = >0, fi(zi,(z;)), is a realvalued
function defined on binary strings z = (z1,...,2,) € {0,1}". Each local fit-
ness function f; depends on the main variable x; and on its neighbourhood
II(x;) C {x1,...,x }\{z:}, £ = |II(z;)|. We restrict to random neighbour-
hoods. The corresponding NP-complete (k > 2) problem is ’Is the optimum
of f(z) equal to n?” Now one can distinguish two phases: 1) soluble phase
(the answer is ’yes’), 2) insoluble phase (the answer is 'no’).

The uniform probability model N(n, k, p) is defined as follows: f;(y) = 0 with
probability p and f;(y) = 1 with probability 1 — p, where y € Dom(f;) =
{0, 1}**+1. Now, the control parameter (like o in K-SAT) is p.

In the fixed ratio model N(n,k, z) the control parameter z takes on values
from [0, 2F+1].

o If z is integer specify f; by choosing randomly without replacement z tu-
ples of possible assignments Y = (yy, ..., ¥,) from Dom(f;) = {0, 1}*+!
and defining f;(y) = 0if y € Y and fi(y) = 1 otherwise.

e For a non-integer z = (1 — «)[z] + o[z + 1] choose randomly [(1 —
a)n| local fitness functions and determine their values according to
N(n, k,[z]). The rest of f; determine according to N(n, k,[z] + 1).

In the case of N(n,k,p) it can be shown [10] that a random instance of
N(n, k,p) can be solved in polynomial time. For N(n,2, z) it has been ana-
lytically determined upper bounds for z.. It turns out that for z > 2.837 the
fixed ratio model N(n,2,z) is asymptotically polynomially solvable ¢. Ac-

cording to experiments N (n, 2, z) is also easy around and below the threshold.

The results given above do not contradict the fact that for £ > 2 the discrete
NK landscape is NP-complete. The results simply show that for restricted k
the instances generated are easy with high probability.

6This result is based on showing that asymptotically N (n, 2, z) contains an unsatisfiable
2-SAT sub-problem with probability 1 for any z > 2.837
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