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Genetic Algorithms
function GenAlg (popSize, maxIter ) =

Select an initial population P of with popSize feasible solutions

best := best solution of P ;

for i := 1 to maxIter

Construct a pairing of the elements in P ; Q = P ;

for each pair w, x in the pairing

(y, z) := mate(w, x);

y := mutate(y); z := mutate(z);

Q := Q ∪ {y, z};
P := select(Q, popSize);

if(f(max(P ) > f(best))

best := max(P );

return best



Genetic Algorithms

• Recombination is usually done using uniform crossover.

• Some times fitter parents can be biased to produce more children.

• Mutation is usually implemented as changing the value of a site with a small probability.

• Linear ranking selection vs proportional selection.



Idea

• Analyse and evaluate different measures of hardness

• The measures are mostly applied on easy problems.

• Some of the methods also relate to the fitness landscape the algorithm perceives.

• The performance is measured by comparing convergence in several ways.



Notation and Definitions

• Σ is a finite alphabet, S = Σl, the universe.

• A schema is a string in Σl′, where Σ = Σ ∪ {#}. # functions as a wild card

symbol.

• an = a . . . a, i.e. n a:s.

• d(s, s′), s, s′ ∈ S Hamming distance.

• A first order function (1ORD):

s 7→
∑

i

gi(si)



Notation and Definitions

• A function is linear if

s 7→ C1 − C2d(s, s∗),

where C1 and C2 are constant and s∗ is the optimum configuration

• A function f is monotone (MON) if

d(s1, s∗) < d(s2, s∗) ⇒ f(s1) > f(s2)

• A fitness function f is unimodal (UNI) it has a unique optimum, which is the global

optimum.



Epistatic Measures

• epistasis =“interaction between the sites in the expression of the fitness function”

• Any fitness function can be written in the form

f(s) = c +
l−1∑

i=0

gi(si) +

+
l−1∑

i=0

l−1∑

j=0

gij(si, sj) + · · ·

+ random error

• f̄P = 1
|P |

∑
t∈P f(t), f̄Pi

(s) = 1
|{t∈P ;ti=si|

∑
t∈P,ti=si

f(t)



Epistatic Measures

•

ξP (s) =
l∑

i=1

(f̄Pi
(s)− f̄P ) + f̄P

• Epistasis variance:

epivP (f)2 =

∑
s∈P (f(s)− ξ(s))2

∑
t∈P f(t)2

• Epistasis correlation:

epicP (f)=
∑

s∈P (f(s)− f̄P )(ξ(s)− ξ̄)√∑
t∈P (f(t)− f̄)2

√∑
t∈P (ξ(t)− ξ̄)2



Epistatic Measures: Discussion

• epiv(f) = 0 iff f is a first order function

• Epistasis correlation is translation invariant i.e. epic(af + b) = epic(f).

• epic(f) = 1 for a subset of the first order functions.

• Epistasis variance returns 0 for both constant and other first order functions.

• Epistasis variance measures more the absensce of epistasis than its presence.



Epistatic Measures: Discussion

• Both epistatic measures are sensitive to non-linear scaling, due to their reference

classes.

• GA are rarely sensitive to non-linear scaling.

• Epistatic measures does not distinguish between the signs of the interactions

• Epistatic measure can be generalised to measure higher order effects

• As a difficulty measure they fare poorly.



Fitness Distance Correlation

• Computes the correlation between a fitness function f and the distance to the global

optimum s∗.

• fitness distance correlation

fdcP (f)=
∑

t∈P (f(t)− f̄P (t))(d(t)− d̄)√∑
t∈P (f(t)− f̄)2

√∑
t∈P (d(t)− d̄)2

• fdc(f) = −1 iff f is a linear function

• Sensitive to non-linear scaling

• Detects constant functions.



Sitewise Optimisation Measure

• We generalise the strict monotone linearity condition for the reference class of the

fdc.

• If one comes closer to the optimum the fitness has to increase.

• The measure is defined algorithmically.

• (f ∈ SWO) if the output of the SWO algorithm is optimal regardless of the input

string.



Sitewise Optimisation Measure

function SWO (function f , string s) =

for each i ∈ L

Ai = {α ∈ Σ| f(s[i|α]) > f(s[i|β]) for all b ∈ Σ}
for each β ∈ Σ

if (si ∈ Ai)

mi = si;

else mi := arbitrary element of Ai;

return m;

• SWO-functions have a unique global optimum.

• They do not possess local constantness.



Sitewise Optimisation Measure

• Denote by SWO(f, P ) the set formed by applying the SWO-algorithm individually

on the members of P

• swoP (f) = w(SWO(f,P ))
w(P )

• w(P ) = 1
P2

∑
p,q∈P d(p, q)

• swo(f) = 0 iff f has a unique global optimum and is SWO.

• The measure is invariant to non-linear scaling.



Beyond Monotone Fitness Functions

• Steepest ascent optimisable (SAO)

• SWO ⊂ SAO ⊂ UNI .

• restricted SAO: a site can only be modified once

• SWO ⊂ RSAO ⊂ UNI .



Experimental Design Perspective

• Instead of just computing the effects of the first order interactions also the higher

order terms are considered.

• Interaction does not necessarily affect convergence

• Already problems with second order effects can be NP-complete

• Total knowledge of the interactions is equivalent to knowing all the Walsh coefficients.



Metropolis Sampling

• Sample only the relevant part of the space.

• Give states a Boltzmann probability.

• Can be used to compute the density of states

• Hypothesis: problems with a fast decay in density should be hard to solve

• It is an invariant measure w.r.t. the landscape of the problem.

• No derivative work available.



On-Line Sampling

• Sample only the relevant space

• Use the states encountered during a given run

• The landscape directly affects which states are chosen.

• Run the same GA with a hamming fitness function f(s) = l − d(s, s∗).

• Compute the ratio of the two measures.



Final Remarks

• Major flaws of the measures: sensitivity to non-linear fitness scaling, constantness and

averaging.

• None of the measures can identify all easy cases for GAs.

• Monotonicity and unimodality are too small reference classes.

• All experiments have been performed with a specific GA - generality?
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