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Genetic Algorithms

function GenAlg (popSize, maxlter) =
Select an initial population P of with popSize feasible solutions
best := best solution of P;
fori := 1 to maxlter
Construct a pairing of the elements in P; () = P;
for each pair w, x in the pairing
(y, z) := mate(w, x);
y .= mutate(y); z := mutate(z);
Q= QU{y, z}
P := select(Q, popSize);
if (f(max(P) > f(best))
best := max(P);
return best



Genetic Algorithms

e Recombination is usually done using uniform crossover.

e Some times fitter parents can be biased to produce more children.

e Mutation is usually implemented as changing the value of a site with a small probability.

e Linear ranking selection vs proportional selection.



ldea

e Analyse and evaluate different measures of hardness

e The measures are mostly applied on easy problems.

e Some of the methods also relate to the fitness landscape the algorithm perceives.

e The performance is measured by comparing convergence in several ways.




Notation and Definitions

e > is a finite alphabet, S = X!, the universe.

e A schema is a string in Zl/, where 3= = > U {#}. # functions as a wild card
symbol.

e a"=a...a,ie n as.

o d(s,s'),s,s’ € S Hamming distance.

e A first order function (10ORD):
s> gi(s;)
1



Notation and Definitions

e A function is linear if
s+ C1 — Cod(s,s™),

where C'1 and C'5 are constant and s™ is the optimum configuration

e A function f is monotone (MON) if

d(st,s*) < d(s2,s%) = f(s1) > f(s°)

e A fitness function f is unimodal (UNI) it has a unique optimum, which is the global

optimum.



Epistatic Measures

e epistasis = “interaction between the sites in the expression of the fitness function”

e Any fitness function can be written in the form

[—1
f(s) = ¢+ > gi(s) +
i=0
[—1 -1
+ > > gii(sis) + -
i=0 j=0
+ random error

e fp |Z7§€Pf(t) fP (s) = |{t€pt_8 |Zt€Pt—st(t)




Epistatic Measures

l
Ep(s) = > (fp(s)—fp)+ fp
i=1

e Epistasis variance:

S sep(f(s) —€(s))?
>tep f(£)?

epivp(f)° =

e Epistasis correlation:

Ysep(f(s) = fP)(E(s) — &)

epicp(f)~ _ _
o \/Ztep(f(t) — f)z\/ZteP(ﬁ(t) — )2



Epistatic Measures: Discussion

e epiv(f) = O iff f is a first order function

e Epistasis correlation is translation invariant i.e. epic(af + b) = epic(f).

e epic(f) = 1 for a subset of the first order functions.

e Epistasis variance returns 0 for both constant and other first order functions.

e Epistasis variance measures more the absensce of epistasis than its presence.




Epistatic Measures: Discussion

e Both epistatic measures are sensitive to non-linear scaling, due to their reference

classes.

e GA are rarely sensitive to non-linear scaling.

e Epistatic measures does not distinguish between the signs of the interactions

e Epistatic measure can be generalised to measure higher order effects

e As a difficulty measure they fare poorly.



Fithess Distance Correlation

e Computes the correlation between a fitness function f and the distance to the global
optimum s*.

e fitness distance correlation

fdep(f)= Yiep(f(#) = fp())(d(t) — d)

Vep(f(8) — D2/ Xiep(d(t) — d)2

e fdc(f) = —1iff fis a linear function

e Sensitive to non-linear scaling

e Detects constant functions.



Sitewise Optimisation Measure

e We generalise the strict monotone linearity condition for the reference class of the

fdc.

e If one comes closer to the optimum the fitness has to increase.

e The measure is defined algorithmically.

o (f € SWO) if the output of the SWO algorithm is optimal regardless of the input
string.



Sitewise Optimisation Measure

function SWO (function f, string s) =
for each i € L
A; ={a € X| f(sli|la]) > f(s[i|B]) forall b e 3}
for each 8 € >
if (s; € A;)
m; = S;,
else m; := arbitrary element of A;;
return m;

e SWO-functions have a unique global optimum.

e They do not possess local constantness.



Sitewise Optimisation Measure

e Denote by SWO(f, P) the set formed by applying the SWO-algorithm individually

on the members of P

o swop(f) = w(S‘g?ngﬁp))

e w(P) = ﬁzp,qep d(p, q)
e swo(f) = O iff f has a unique global optimum and is SWO.

e The measure is invariant to non-linear scaling.



Beyond Monotone Fitness Functions

e Steepest ascent optimisable (SAO)

e SWO CSAO CUNI.

e restricted SAQ: a site can only be modified once

e SWO C RSAO CUNI.




Experimental Design Perspective

e Instead of just computing the effects of the first order interactions also the higher

order terms are considered.

e Interaction does not necessarily affect convergence

e Already problems with second order effects can be NP-complete

e Total knowledge of the interactions is equivalent to knowing all the Walsh coefficients.



Metropolis Sampling

e Sample only the relevant part of the space.

e Give states a Boltzmann probability.

e Can be used to compute the density of states

e Hypothesis: problems with a fast decay in density should be hard to solve

e It is an invariant measure w.r.t. the landscape of the problem.

e No derivative work available.




On-Line Sampling

e Sample only the relevant space

e Use the states encountered during a given run

e The landscape directly affects which states are chosen.

e Run the same GA with a hamming fitness function f(s) = [ — d(s, s¥).

e Compute the ratio of the two measures.




Final Remarks

e Major flaws of the measures: sensitivity to non-linear fitness scaling, constantness and

averaging.

e None of the measures can identify all easy cases for GAs.

e Monotonicity and unimodality are too small reference classes.

e All experiments have been performed with a specific GA - generality?
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