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Fitness Landscapes: Introduction

e The concept of 'fitness landscapes’ stems from Wright's studies in theoretical biology
in the 1930s.

e The concept was used to explain the evolution and fitness of genotypes.

e More resently it has been applied to the understanding of combinatorial problems.

e Especially interesting is what landscape features characterise hard problems.



Fitness Landscapes: Example

More formally, the key ingredients of a fitness landscape are

1. a set X of configurations,

2. a notion of neighbourhood, nearness, distance, or accessibility on X, and

3. a fitness function f : X — R




Spin Glasses: Introduction

Spin glasses are magnetic substances which have complicated magnetic interactions.

They can both exhibit so called ferromagnetic and anti-ferromagnetic interaction.

Spin glasses are amorphous substances which show structure only for a few tens atom

lengths.

Amorphous substances are usually 'transparent’ for some wavelengths of light.

The spin glass model tries to model the magnetic interaction and properties of the

substancess.



Spin Glasses: General Model

e a crystal lattice with IV lattice sites

e Each site ¢ is assigned a vector quantity s;, the magnetic spin.

e The sites interact according to a coupling constant J;;.

e A configuration of the system is a assignment to the /N magnetic spins.
e The energy, or the Hamiltonian, of the system at particular state s is

H(S) — — Z Jijsz' * St
1>k




Spin Glasses: Ground States

e One of the most interesting problems for a spin glass is finding the minimum energy
configuration, the ground state.

e Definition. The problem GROUND STATE is to find the minimum energy configu-

ration given the necessary input to compute the Hamiltonian of the system.

e The model presented above is usually too general for analysis in any manner, which

is why simpler forms are usually analysed.



Spin Glasses: Ising Models

e In the ising model the spins s; are restricted to s; = £1.
e Consider a graph G = (V, E) with N vertexes.

e Each vertex 7 € V is associated with magnetic spin s;.

e Each edge {i,j} is labelled with a coupling constant Jij-
e The energy of a state s = (1, 82,...,S) is given by:

H(S) — — Z JZJSZS‘7
{i,jERE




Ising Models: Relation to Cuts

o Let CT = {i|s; =1} and C~ = {i|s; = —1}.

e Let E1 be the edges with endpoints only in Ctand E-inC— respectively. The
edges which go between the two partitions are denoted E*.

e The weight of a cut C = (C1,C7) is defined as

weight(C) = ) Jij
{i.j}eE*



Ising Models: Relation to Cuts

e Using weight(C') the Hamiltonian can be rewritten

{i,j}eET {i,j}eE~ {ij e B+
= — > Jij + 2weight(C)
{i,j}€FE

e MINIMUM WEIGHT CUT is N P-complete — GROUND STATE is N P-complete.



Ising Models: Partition Functions

e Physicists are also interested in the so called partition function. It is defined as

Z =Y cap(~BH(s)).
{s}

e The partition function in one sense completely characterises the system.

e With knowledge of the partition function the ground state among other things can
effectively be computed.

e Consequently it is at least as hard as finding the ground state.

e A naive approach to solving to compute the partition function would require N
summations.



Ising Models: Partition Functions

e Analytical exact solutions are available for 1-D and planar 2-D geometries.

e Finding generalisations turned out to be impossible.

e MINIMUM WEIGHT CUT problem is polynomial when the graph is planar

e Theorem. (Istrail) Finding the partition function is NP-hard for every non-planar

crystal lattice.



Ising Models: Limit Solutions

e By assigning a probability distribution to the set of states in the system, the methods
of statistical mechanics (S& M ;))are available.

P(s) = exp(—BH(s))/Z
e Results apply in the limit N — oo (thermodynamical limit).

e The coupling constants adhere to some probability distribution

e Example result: if J;; is 1 or —1 with equal probability the minimum of the Hamil-
tonian takes on the value —.7633N3/2.



N-K Landscapes: Introduction

e Introduced by Stuart Kauffmann.

e A family of landscapes where the ruggedness — the number of local optima — could

easily be tuned.

e Applications: protein folding, evolutionary computation, models of genotype evolution,

etc.



N-K Landscapes: Definitions

e The N-K model can be seen as a simple way of generating a tunable fitness function
on bit strings, x = x1xo...T)N.

e A fitness function f is constructed by generating N component functions f;.

e Each f; depends on K + 1 bits.

e The fitness function f is the average of the component functions.

1 N
f(X) — N z:]- fi(xilaxi27 K 7miK_|_1)
1=

e Moving in the landscape is done by flipping a single bit of the input string.



N-K Landscapes: Variations

e In the adjacent model f; depends on 2:th bit and K adjacent bits.

e In the random model f; depends on the 2:th bit and K other randomly chosen bits.

e In the arbitrary model f; depends on K + 1 randomly chosen bits.

e The values for the component functions are constructed by for each function sampling

2K 41 yalues from a random distribution, which usually is Gaussian.



N-K Landscapes: Properties

e For the case K=0, each component function is independent of the other functions. A
simple hill climbing algorithm will find the unique optimum.

® In case when K = N — 1 each component function is dependent an all of the bits
of the string.

e Each bit string is statistically independent of its neighbours.

e — The probability that a random bit string is a local optimum is NL-H

: . oN
— The expected number of local optima is NET

— A hill climbing algorithm is expected to hit a local optimum in In(IN — 1) steps.



N-K Landscapes: Properties

e When 1 < K < N — 1 the component functions depend on some but not all bits
in the string.

— When K is small, many of the bits are the same for the highest local optima.

This correlation decreases when K is increased.

— The average Hamming distance between local optima is approximately

Nlogo(K + 1)
2(K+1)




N-K Landscapes: Complexity

e Theorem. (Weinberger) The N-K optimisation problem with adjacent neighbour-
hoods is solvable in O(25 N) steps and is thus in P.

e For arbitrary neighbourhoods, i.e. when f; can depend on any bits, the problem is
difficult for K > 1. The problem can be reduced to the NP-complete problem
MAX2SAT. Theorem. The N-K optimisation problem with random neighbourhoods
is polynomial for K = 1.

e Theorem. The N-K optimisation problem with random neighbourhoods is NP-
complete for K > 2. (Reduction to MAX2SAT possible again)

e Theorem. The approximation threshold for the algorithm with iK' > 2 is at most

1



N-K Landscapes: Approximation

function N-K-OPTIM () : (bit string) =
forz from0Oto N — 1 do
So < subset of S where the z:th bit is O
Mg < average of f over Sp
S1 «— subset of S where the 7:th bit is 1
M7 < average of f over Sy
if Mo > M; then
s[i] < O
S — 5o
else
s[i] — 1
S — 54
od
return s //Return the approximate string



Optimisation Problems: Introduction

e In the following we will discuss two well-known optimisation problems: travelling salesman

(TSP) and ASSIGNMENT.

e The problems are in many ways similar but they have crucial difference.

e [SP is N P-complete while ASSIGNMENT is in P.



Optimisation Problems: TSP

e An instance of the travelling salesman problem is an n X n matrix (aij), where each

e The problem is to find the permutation 7w of {1,..., N} such that C'(7) =
2i=1 O (i) m(i+1) (where by m(n + 1) we mean (1)) is minimised.

e TSP belongs to the category problems for which no polynomial approximation scheme
is possible unless P = NP



TSP: Spin Glass Analysis

e TSP was one the first combinatorial optimisation problems to which the probabilistic
methods developed for spin glasses were applied.

e The links a;; are considered as uniformly distributed random variables on [0, 1]

e The cost function C'(7) is interpreted as the Hamiltonian.

e The tours have a probability according to the formula above.

e Result: the length of the tour, with probability one, is in the large limit [ = 2.08.

® The result has been corroborated with numerical simulations.



TSP: Landscape

e Stadler and Schnabl have studied statistical properties of the TSP landscape for both

the symmetric and the asymmetric case.

e Two different neighbourhoods are studied: transpositions and inversions.

e The study used random walks and other statistical analysis to examine the landscapes

e Symmetric case: TSP generates an AR(1) landscape.

e Asymmetric case: When transpositions are used it is once again an AR(1) landscape.

With inversion it is more complex.



ASSIGNMENT: Definition

® An instance of ASSIGNMENT is a n X n matrix (a;;) where a;; > O.

e The problem is to find a permutation 7 on {1,2,...,n} such that

n
Ey =) ai,m(%)
1=1

iIs minimised.

e The formulation is very similar to TSP.




ASSIGNMENT: Spin Glass Analysis

o Let the a;; be drawn from a common probability density p(a)
e [* corresponds to the Hamiltonian.

e |t has been proved that

2

e When the a;; are drawn from an exponential distribution it has been shown that in

the finite case the average optimum is

no1
*
k=1



ASSIGNMENT: Landscape

e As the permutation can be arbitrary in matching there several possibilities for neigh-
bourhoods.

e Examples include transposition, composition with another permutation, etc.

e The correlation of the landscape is the same as for TSP.



