Landscape Families

Timo Latvala

Outline

- Fitness Landscapes
- Spin Glasses
- N-K landscapes
- Optimisation problems
 - Travelling Salesman
 - Assignment

Fitness Landscapes: Introduction

- The concept of 'fitness landscapes' stems from Wright's studies in theoretical biology in the 1930s.
- The concept was used to explain the evolution and fitness of genotypes.
- More resently it has been applied to the understanding of combinatorial problems.
- Especially interesting is what landscape features characterise hard problems.

More formally, the key ingredients of a fitness landscape are

- 1. a set X of configurations,
- 2. a notion of neighbourhood, nearness, distance, or accessibility on X, and
- 3. a fitness function $f: X \to \mathbb{R}$

Spin Glasses: Introduction

- Spin glasses are magnetic substances which have complicated magnetic interactions.
- They can both exhibit so called ferromagnetic and anti-ferromagnetic interaction.
- Spin glasses are amorphous substances which show structure only for a few tens atom lengths.
- Amorphous substances are usually 'transparent' for some wavelengths of light.
- The spin glass model tries to model the magnetic interaction and properties of the substancess.

Spin Glasses: General Model

- $\bullet\,$ a crystal lattice with N lattice sites
- Each site i is assigned a vector quantity s_i , the magnetic spin.
- The sites interact according to a *coupling constant* J_{ij} .
- A configuration of the system is a assignment to the N magnetic spins.
- The energy, or the *Hamiltonian*, of the system at particular state s is

$$H(\mathbf{s}) = -\sum_{i>k} J_{ij}\mathbf{s}_i \cdot \mathbf{s}_k$$

Spin Glasses: Ground States

- One of the most interesting problems for a spin glass is finding the minimum energy configuration, the *ground state*.
- **Definition.** The problem GROUND STATE is to find the minimum energy configuration given the necessary input to compute the Hamiltonian of the system.
- The model presented above is usually too general for analysis in any manner, which is why simpler forms are usually analysed.

Spin Glasses: Ising Models

- In the ising model the spins s_i are restricted to $s_i = \pm 1$.
- Consider a graph $G_N = (V, E)$ with N vertexes.
- Each vertex $i \in V$ is associated with magnetic spin s_i .
- Each edge $\{i, j\}$ is labelled with a coupling constant J_{ij} .
- The energy of a state $s = (s_1, s_2, \ldots, s_N)$ is given by:

$$H(s) = -\sum_{\{i,j\}\in E} J_{ij}s_is_j.$$

Ising Models: Relation to Cuts

- Let $C^+ = \{i | s_i = 1\}$ and $C^- = \{i | s_i = -1\}$.
- Let E^+ be the edges with endpoints only in C^+ and E^- in C^- respectively. The edges which go between the two partitions are denoted E^{\pm} .
- The weight of a cut $C = (C^+, C^-)$ is defined as

weight(C) =
$$\sum_{\{i,j\}\in E^{\pm}} J_{ij}$$

Ising Models: Relation to Cuts

• Using weight(C) the Hamiltonian can be rewritten

$$H(C) = -\sum_{\{i,j\}\in E^{+}} J_{ij} - \sum_{\{i,j\}\in E^{-}} J_{ij} - \sum_{\{i,j\}\in E^{\pm}} J_{ij} = -\sum_{\{i,j\}\in E} J_{ij} + 2weight(C)$$

• MINIMUM WEIGHT CUT is NP-complete \rightarrow GROUND STATE is NP-complete.

Ising Models: Partition Functions

• Physicists are also interested in the so called *partition function*. It is defined as

$$Z = \sum_{\{s\}} exp(-\beta H(s)).$$

- The partition function in one sense completely characterises the system.
- With knowledge of the partition function the ground state among other things can effectively be computed.
- Consequently it is at least as hard as finding the ground state.
- A naive approach to solving to compute the partition function would require 2^N summations.

Ising Models: Partition Functions

- Analytical exact solutions are available for 1-D and planar 2-D geometries.
- Finding generalisations turned out to be impossible.
- MINIMUM WEIGHT CUT problem is polynomial when the graph is planar
- **Theorem.** (Istrail) Finding the partition function is NP-hard for every non-planar crystal lattice.

Ising Models: Limit Solutions

• By assigning a probability distribution to the set of states in the system, the methods of statistical mechanics (S& M ;))are available.

$$P(s) = exp(-\beta H(s))/Z$$

- Results apply in the limit $N \to \infty$ (thermodynamical limit).
- The coupling constants adhere to some probability distribution
- Example result: if J_{ij} is 1 or -1 with equal probability the minimum of the Hamiltonian takes on the value $-.7633N^{3/2}$.

N-K Landscapes: Introduction

- Introduced by Stuart Kauffmann.
- A family of landscapes where the ruggedness the number of local optima could easily be tuned.
- Applications: protein folding, evolutionary computation, models of genotype evolution, etc.

N-K Landscapes: Definitions

- The N-K model can be seen as a simple way of generating a tunable fitness function on bit strings, x = x₁x₂...x_N.
- A fitness function f is constructed by generating N component functions f_i .
- Each f_i depends on K + 1 bits.
- The fitness function f is the average of the component functions.

$$f(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} f_i(x_{i_1}, x_{i_2}, \dots, x_{i_{K+1}})$$

• Moving in the landscape is done by flipping a single bit of the input string.

N-K Landscapes: Variations

- In the *adjacent* model f_i depends on *i*:th bit and K adjacent bits.
- In the random model f_i depends on the *i*:th bit and K other randomly chosen bits.
- In the *arbitrary* model f_i depends on K + 1 randomly chosen bits.
- The values for the component functions are constructed by for each function sampling 2^{K+1} values from a random distribution, which usually is Gaussian.

N-K Landscapes: Properties

- For the case K=0, each component function is independent of the other functions. A simple hill climbing algorithm will find the unique optimum.
- In case when K = N 1 each component function is dependent an all of the bits of the string.
- Each bit string is statistically independent of its neighbours.
- – The probability that a random bit string is a local optimum is $\frac{1}{N+1}$.
 - The expected number of local optima is $\frac{2^N}{N+1}$.
 - A hill climbing algorithm is expected to hit a local optimum in ln(N-1) steps.

N-K Landscapes: Properties

- When 1 ≤ K < N − 1 the component functions depend on some but not all bits in the string.
 - When K is small, many of the bits are the same for the highest local optima. This correlation decreases when K is increased.
 - The average Hamming distance between local optima is approximately

$$\frac{Nlog_2(K+1)}{2(K+1)}$$

N-K Landscapes: Complexity

- Theorem. (Weinberger) The N-K optimisation problem with adjacent neighbourhoods is solvable in $O(2^K N)$ steps and is thus in \mathcal{P} .
- For arbitrary neighbourhoods, i.e. when f_i can depend on any bits, the problem is difficult for $K \ge 1$. The problem can be reduced to the NP-complete problem MAX2SAT. **Theorem.** The N-K optimisation problem with random neighbourhoods is polynomial for K = 1.
- **Theorem.** The N-K optimisation problem with random neighbourhoods is NP-complete for $K \ge 2$. (Reduction to MAX2SAT possible again)
- **Theorem.** The approximation threshold for the algorithm with $K \ge 2$ is at most $1 \frac{1}{2^{K+1}}$.

N-K Landscapes: Approximation

function N-K-OPTIM () : (bit string) = for i from 0 to N-1 do $S_0 \leftarrow$ subset of S where the *i*:th bit is 0 $M_0 \leftarrow \text{average of } f \text{ over } S_0$ $S_1 \leftarrow \text{subset of } S \text{ where the } i: \text{th bit is } 1$ $M_1 \leftarrow \text{average of } f \text{ over } S_1$ if $M_0 > M_1$ then $s[i] \leftarrow 0$ $S \leftarrow S_0$ else $s[i] \leftarrow 1$ $S \leftarrow S_1$ od

return s //Return the approximate string

Optimisation Problems: Introduction

- In the following we will discuss two well-known optimisation problems: travelling salesman (TSP) and ASSIGNMENT.
- The problems are in many ways similar but they have crucial difference.
- TSP is NP-complete while ASSIGNMENT is in P.

Optimisation Problems: TSP

- An instance of the travelling salesman problem is an $n \times n$ matrix (a_{ij}) , where each $a_{ij} \ge 0$.
- The problem is to find the permutation π of $\{1, \ldots, N\}$ such that $C(\pi) = \sum_{i=1}^{n} a_{\pi(i),\pi(i+1)}$ (where by $\pi(n+1)$ we mean $\pi(1)$) is minimised.
- TSP belongs to the category problems for which no polynomial approximation scheme is possible unless P = NP

TSP: Spin Glass Analysis

- TSP was one the first combinatorial optimisation problems to which the probabilistic methods developed for spin glasses were applied.
- The links a_{ij} are considered as uniformly distributed random variables on [0, 1]
- The cost function $C(\pi)$ is interpreted as the Hamiltonian.
- The tours have a probability according to the formula above.
- Result: the length of the tour, with probability one, is in the large limit l = 2.08.
- The result has been corroborated with numerical simulations.

TSP: Landscape

- Stadler and Schnabl have studied statistical properties of the TSP landscape for both the symmetric and the asymmetric case.
- Two different neighbourhoods are studied: transpositions and inversions.
- The study used random walks and other statistical analysis to examine the landscapes
- Symmetric case: TSP generates an AR(1) landscape.
- Asymmetric case: When transpositions are used it is once again an AR(1) landscape.
 With inversion it is more complex.

ASSIGNMENT: Definition

- An instance of ASSIGNMENT is a $n \times n$ matrix (a_{ij}) where $a_{ij} \ge 0$.
- The problem is to find a permutation π on $\{1, 2, \ldots, n\}$ such that

$$E_n^* = \sum_{i=1}^n a_i, \pi(i)$$

is minimised.

• The formulation is very similar to TSP.

ASSIGNMENT: Spin Glass Analysis

- Let the a_{ij} be drawn from a common probability density $\rho(a)$
- E_n^* corresponds to the Hamiltonian.
- It has been proved that

$$\lim_{n\to\infty} \langle E_n^* \rangle = \frac{\pi^2}{6}.$$

• When the a_{ij} are drawn from an exponential distribution it has been shown that in the finite case the average optimum is

$$\langle E_n^* \rangle = \sum_{k=1}^n \frac{1}{k^2}.$$

ASSIGNMENT: Landscape

- As the permutation can be arbitrary in matching there several possibilities for neighbourhoods.
- Examples include transposition, composition with another permutation, etc.
- The correlation of the landscape is the same as for TSP.