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Fitness Landscapes: Introduction

• The concept of ’fitness landscapes’ stems from Wright’s studies in theoretical biology

in the 1930s.

• The concept was used to explain the evolution and fitness of genotypes.

• More resently it has been applied to the understanding of combinatorial problems.

• Especially interesting is what landscape features characterise hard problems.



Fitness Landscapes: Example

More formally, the key ingredients of a fitness landscape are

1. a set X of configurations,

2. a notion of neighbourhood, nearness, distance, or accessibility on X, and

3. a fitness function f : X → R



Spin Glasses: Introduction

• Spin glasses are magnetic substances which have complicated magnetic interactions.

• They can both exhibit so called ferromagnetic and anti-ferromagnetic interaction.

• Spin glasses are amorphous substances which show structure only for a few tens atom

lengths.

• Amorphous substances are usually ’transparent’ for some wavelengths of light.

• The spin glass model tries to model the magnetic interaction and properties of the

substancess.



Spin Glasses: General Model

• a crystal lattice with N lattice sites

• Each site i is assigned a vector quantity si, the magnetic spin.

• The sites interact according to a coupling constant Jij.

• A configuration of the system is a assignment to the N magnetic spins.

• The energy, or the Hamiltonian, of the system at particular state s is

H(s) = −
∑

i>k

Jijsi · sk



Spin Glasses: Ground States

• One of the most interesting problems for a spin glass is finding the minimum energy

configuration, the ground state.

• Definition. The problem GROUND STATE is to find the minimum energy configu-

ration given the necessary input to compute the Hamiltonian of the system.

• The model presented above is usually too general for analysis in any manner, which

is why simpler forms are usually analysed.



Spin Glasses: Ising Models

• In the ising model the spins si are restricted to si = ±1.

• Consider a graph GN = (V, E) with N vertexes.

• Each vertex i ∈ V is associated with magnetic spin si.

• Each edge {i, j} is labelled with a coupling constant Jij.

• The energy of a state s = (s1, s2, . . . , sN) is given by:

H(s) = −
∑

{i,j}∈E

Jijsisj.



Ising Models: Relation to Cuts

• Let C+ = {i|si = 1} and C− = {i|si = −1}.

• Let E+ be the edges with endpoints only in C+ and E− in C− respectively. The

edges which go between the two partitions are denoted E±.

• The weight of a cut C = (C+, C−) is defined as

weight(C) =
∑

{i,j}∈E±
Jij



Ising Models: Relation to Cuts

• Using weight(C) the Hamiltonian can be rewritten

H(C) = −
∑

{i,j}∈E+

Jij −
∑

{i,j}∈E−
Jij −

∑

{i,j}∈E±
Jij =

= −
∑

{i,j}∈E

Jij + 2weight(C)

• MINIMUM WEIGHT CUT is NP -complete → GROUND STATE is NP -complete.



Ising Models: Partition Functions

• Physicists are also interested in the so called partition function. It is defined as

Z =
∑

{s}
exp(−βH(s)).

• The partition function in one sense completely characterises the system.

• With knowledge of the partition function the ground state among other things can
effectively be computed.

• Consequently it is at least as hard as finding the ground state.

• A naive approach to solving to compute the partition function would require 2N

summations.



Ising Models: Partition Functions

• Analytical exact solutions are available for 1-D and planar 2-D geometries.

• Finding generalisations turned out to be impossible.

• MINIMUM WEIGHT CUT problem is polynomial when the graph is planar

• Theorem. (Istrail) Finding the partition function is NP-hard for every non-planar

crystal lattice.



Ising Models: Limit Solutions

• By assigning a probability distribution to the set of states in the system, the methods

of statistical mechanics (S& M ;))are available.

•
P (s) = exp(−βH(s))/Z

• Results apply in the limit N →∞ (thermodynamical limit).

• The coupling constants adhere to some probability distribution

• Example result: if Jij is 1 or −1 with equal probability the minimum of the Hamil-

tonian takes on the value −.7633N3/2.



N-K Landscapes: Introduction

• Introduced by Stuart Kauffmann.

• A family of landscapes where the ruggedness – the number of local optima – could

easily be tuned.

• Applications: protein folding, evolutionary computation, models of genotype evolution,

etc.



N-K Landscapes: Definitions

• The N-K model can be seen as a simple way of generating a tunable fitness function
on bit strings, x = x1x2 . . . xN .

• A fitness function f is constructed by generating N component functions fi.

• Each fi depends on K + 1 bits.

• The fitness function f is the average of the component functions.

f(x) =
1

N

N∑

i=1

fi(xi1, xi2, . . . , xiK+1
)

• Moving in the landscape is done by flipping a single bit of the input string.



N-K Landscapes: Variations

• In the adjacent model fi depends on i:th bit and K adjacent bits.

• In the random model fi depends on the i:th bit and K other randomly chosen bits.

• In the arbitrary model fi depends on K + 1 randomly chosen bits.

• The values for the component functions are constructed by for each function sampling

2K+1 values from a random distribution, which usually is Gaussian.



N-K Landscapes: Properties

• For the case K=0, each component function is independent of the other functions. A
simple hill climbing algorithm will find the unique optimum.

• In case when K = N − 1 each component function is dependent an all of the bits
of the string.

• Each bit string is statistically independent of its neighbours.

• – The probability that a random bit string is a local optimum is 1
N+1.

– The expected number of local optima is 2N

N+1.

– A hill climbing algorithm is expected to hit a local optimum in ln(N −1) steps.



N-K Landscapes: Properties

• When 1 ≤ K < N − 1 the component functions depend on some but not all bits

in the string.

– When K is small, many of the bits are the same for the highest local optima.

This correlation decreases when K is increased.

– The average Hamming distance between local optima is approximately

Nlog2(K + 1)

2(K + 1)
.



N-K Landscapes: Complexity

• Theorem. (Weinberger) The N-K optimisation problem with adjacent neighbour-
hoods is solvable in O(2KN) steps and is thus in P .

• For arbitrary neighbourhoods, i.e. when fi can depend on any bits, the problem is
difficult for K ≥ 1. The problem can be reduced to the NP-complete problem
MAX2SAT. Theorem. The N-K optimisation problem with random neighbourhoods
is polynomial for K = 1.

• Theorem. The N-K optimisation problem with random neighbourhoods is NP-
complete for K ≥ 2. (Reduction to MAX2SAT possible again)

• Theorem. The approximation threshold for the algorithm with K ≥ 2 is at most
1− 1

2K+1 .



N-K Landscapes: Approximation
function N-K-OPTIM () : (bit string) =

for i from 0 to N − 1 do

S0 ← subset of S where the i:th bit is 0

M0 ← average of f over S0

S1 ← subset of S where the i:th bit is 1

M1 ← average of f over S1

if M0 > M1 then

s[i] ← 0

S ← S0

else

s[i] ← 1

S ← S1

od

return s //Return the approximate string



Optimisation Problems: Introduction

• In the following we will discuss two well-known optimisation problems: travelling salesman

(TSP) and ASSIGNMENT.

• The problems are in many ways similar but they have crucial difference.

• TSP is NP -complete while ASSIGNMENT is in P .



Optimisation Problems: TSP

• An instance of the travelling salesman problem is an n×n matrix (aij), where each

aij ≥ 0.

• The problem is to find the permutation π of {1, . . . , N} such that C(π) =∑n
i=1 aπ(i),π(i+1) (where by π(n + 1) we mean π(1)) is minimised.

• TSP belongs to the category problems for which no polynomial approximation scheme

is possible unless P = NP



TSP: Spin Glass Analysis

• TSP was one the first combinatorial optimisation problems to which the probabilistic

methods developed for spin glasses were applied.

• The links aij are considered as uniformly distributed random variables on [0,1]

• The cost function C(π) is interpreted as the Hamiltonian.

• The tours have a probability according to the formula above.

• Result: the length of the tour, with probability one, is in the large limit l = 2.08.

• The result has been corroborated with numerical simulations.



TSP: Landscape

• Stadler and Schnabl have studied statistical properties of the TSP landscape for both

the symmetric and the asymmetric case.

• Two different neighbourhoods are studied: transpositions and inversions.

• The study used random walks and other statistical analysis to examine the landscapes

• Symmetric case: TSP generates an AR(1) landscape.

• Asymmetric case: When transpositions are used it is once again an AR(1) landscape.

With inversion it is more complex.



ASSIGNMENT: Definition

• An instance of ASSIGNMENT is a n× n matrix (aij) where aij ≥ 0.

• The problem is to find a permutation π on {1,2, . . . , n} such that

E∗n =
n∑

i=1

ai, π(i)

is minimised.

• The formulation is very similar to TSP.



ASSIGNMENT: Spin Glass Analysis

• Let the aij be drawn from a common probability density ρ(a)

• E∗n corresponds to the Hamiltonian.

• It has been proved that

limn→∞〈E∗n〉 =
π2

6
.

• When the aij are drawn from an exponential distribution it has been shown that in

the finite case the average optimum is

〈E∗n〉 =
n∑

k=1

1

k2
.



ASSIGNMENT: Landscape

• As the permutation can be arbitrary in matching there several possibilities for neigh-

bourhoods.

• Examples include transposition, composition with another permutation, etc.

• The correlation of the landscape is the same as for TSP.


