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1 Introduction

Fitness landscapes is a concept which stems from theoretical biology. It was
used as a metaphor for describing population evolution and explaining the
link between fitness of genes and multiple population attractors in the space
of genotypes.

Currently, fitness landscapes and landscape theory are under active research
in physics of disordered systems and combinatorial optimisation besides the-
oretical biology.

The intuitive idea of landscape is easy. The familiar travelling salesman
problem spans a fitness landscape in the following way. Each possible tour of
the cities is a point the space of configurations. Other tours can be obtained
by e.g. switching the order of two cities. The length or cost of the tour spans
a landscape in which one can move by switching the order of two cities.

More formally, the key ingredients of a fitness landscape are

1. a set X of configurations,

2. a notion of neighbourhood, nearness, distance, or accessibility on X,
and

3. a fitness function f : X → R

This work will describe three families of landscapes. The first family comes
from the realm of physics, namely spin glasses. Properties of the Ising model
with its different variants are covered. The N-K landscapes represent a model
from theoretical biology. Both complexity related issues and landscape prop-
erties, especially related to adaptive walks, are discussed. Optimisation prob-
lems is the last family. Here we focus on describing the properties of the
landscape.

2 Spin Glasses

Physics has long sought to study the structure and properties of matter.
The field of condensed matter physics is especially interested in the different
properties of solids. Our first landscape family comes from this domain.
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Spin glasses are magnetic substances which have complicated magnetic in-
teractions. They can exhibit so called ferromagnetic and anti-ferromagnetic
interaction, sometimes even both. Spin glasses are also called amorphous
magnets. In most cases amorphous substances show structure only for a
few tens atom lengths unlike e.g. regular crystalline structures which can be
completely regular. The dividing line between amorphous substances and
polycrystalline substances is, however, not clear cut.

A model for the magnetic interaction of spin glasses from which properties
of the materials can fairly easily be described. The system is modelled as a
crystal lattice with N lattice sites. Each site i is assigned a vector quantity
si, the magnetic spin. The sites interact according to a coupling constant
Jij. The coupling constant defines the neighbourhood of a site. If Jij = 0,
the sites i and j are not neighbours. A configuration of the system is an
assignment to the N magnetic spins. The energy, or the Hamiltonian, of the
system at particular state s is given by the equation:

H(s) = −
∑

i>k

Jijsi · sk (1)

Finding the minimum energy configuration, the ground state, is one of the
most important problems in statistical physics. We get the following problem.

Definition. The problem GROUND STATE is to find the minimum energy
configuration given coupling constants and the problem geometry.

Clearly the spin glass model has all the ingredients of a fitness landscape.
The Hamiltonian of the model spans a landscape which has been studied
intensively in statistical mechanics.

This general model has several subclasses. In many cases the magnetic spins
can only take on two values ±1. Usually also the possible values for the
coupling constant are restricted.

2.1 Ising Models

The model presented above is usually too general for analysis in any manner,
which is why simpler forms are usually analysed. In Ising models the spins
are restricted to si = ±1 and the geometries are simple. The values of
the coupling constant are usually limited to {−J, 0, J}, where J is a positive
integer. The models are named after the German physicist Ising, who studied
magnetic properties of materials in the 1920s.

3



The Ising model can be cast into graph theoretic terms. Consider a graph
GN = (V,E) with N vertexes. Each vertex i ∈ V is associated with magnetic
spin si. Each edge {i, j} is labelled with a coupling constant Jij. The coupling
constant can take on a positive, negative or zero value. The energy of a state
s = (s1, s2, . . . , sN) is given by:

H(s) = −
∑

{i,j}∈E

Jijsisj. (2)

Here each vertex corresponds to a lattice site and the edges between the
vertexes correspond to the bonds.

One can define a cut on the lattice graph in the following way. Let C+ =
{i | si = 1} and C− = {i | si = −1}. These two sets partition the set of
vertexes, i.e. V = C+ ∪ C−. Similarly the edges can be partitioned into
three sets. Let E+ be the edges with endpoints only in C+ and E− in C−

respectively. The edges which go between the two partitions are denoted E±.
The weight of a cut C = (C+, C−) is defined as

weight(C) =
∑

{i,j}∈E±
Jij

Each configuration s corresponds to a specific cut C. Using the notation of
cuts the Hamiltonian of the system can be rewritten to another form.

H(C) = −
∑

{i,j}∈E+

Jij −
∑

{i,j}∈E−
Jij −

∑

{i,j}∈E±
Jij =

= −
∑

{i,j}∈E

Jij + 2weight(C)

Thus minimising the weight of the cut is equivalent to finding the ground
state of the spin glass. In arbitrary graphs, minimising the weight of the cut
is NP-complete when both positive and negative weights are allowed. We
have proved the following theorem (see e.g. [3]).

Theorem. Solving the GROUND STATE problem is NP-complete for arbi-
trary graphs.

In the special case the coupling constants are positive (the so called ferromag-
netic case), the problem is polynomial even for arbitrary graphs, because then
problem is equivalent to the well-known polynomial maximum flow problem.

In addition to finding the ground state of a system, physicists are also inter-
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ested in the so called partition function. It is defined as

Z =
∑

{s}
exp(−βH(s)). (3)

The partition function is of interest because it in one sense completely char-
acterises the system. With knowledge of the partition function the ground
state among other things can be efficiently computed. Computing the parti-
tion function is at least as hard as finding the ground state or the maximum
energy state [3].

A naive approach to solving to compute the partition function would require
2N summations, one for each configuration. In the general case we cannot
hope do better due to the previous NP -completeness result. The situation
is even worse than that as Jerrum and Sinclair [4] proved that computing
the partition function is #P -complete, even when only positive couplings are
allowed.

By examining simpler cases exact analytical solutions have been found to
some subclasses of the partition function problem. When the geometry of
the problem is one dimensional it is possible to find an exact solution. In
the 2D case a solution has been presented for the case when the lattice
graph is planar. For decades, generalisations were searched but nothing was
found. The 3D version of the problem was proved NP-complete in 1982 by
Barhanona [2].

It turned out however that dimensionality was not critical for the complexity
of the problem. Remembering that the MINIMUM WEIGHT CUT problem
is polynomial when the graph is planar, Istrail [3] showed that the problem is
NP-complete for every on planar crystal lattice graph. Then he proved that
many general geometries contains a Kuratowksian subgraph, a well-known
non-planar graph, effectively proving their NP-completeness.

Theorem. Computing the partition function is NP-hard for every non-
planar crystal lattice.

The state of the research is that all problems with exact analytical solutions
can be computed in polynomial time.

Several approximation schemes have been developed for finding the ground
state and partition function. These include for instance the well-known sim-
ulated annealing algorithm (see e.g. [6]).
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2.2 Limit Solutions

Although several of the problem in statistical mechanics are intractable, the
spin glass problem has also been investigated from a probabilistic view point.

The methods of statistical mechanics provide answers to many of the prob-
lems presented earlier. The arguments are probabilistic in nature and there-
fore only apply when special conditions are met.

The methods work by letting the states of the system adhere to the following
probability distribution.

P (s) = exp(−βH(s))/Z (4)

Low energy states have the highest probability in this distribution. The
coupling constants must also adhere to some probability distribution. Thus
these methods cannot say anything about a specific spin glass system. The
solutions are also such that all the results apply only in the limit when N →
∞. This limit is referred to as the thermodynamical limit.

The different methods are explained and analysed e.g. [6]. Results which
have been obtained include e.g. that if Jij is 1 or −1 with equal probability
the minimum of the Hamiltonian takes on the value −.7633N3/2.

These same methods are also applicable to other combinatorial optimisation
problems.

3 N-K Fitness Landscapes

N-K fitness landscapes is a family of a landscapes introduced by Stuart Kauff-
man [5]. The landscapes were presented as a landscape family where the
ruggedness – the number of local optima – could easily be tuned. Models of
the evolution of genotypes is similar but somewhat more complex than the
N-K model. The N-K model has, however, been used to study the quali-
tative properties of these more complex fitness landscapes of genotypes. In
evolutionary computation N-K landscapes are both used as examples and
test cases.
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3.1 Definitions

The N-K model can be seen as a simple way of generating a tunable fitness
function on bit strings. The bit strings x = x1x2 . . . xN consist of N bits.
A fitness function f is constructed by generating N component functions fi.
Each fi depends on K + 1 bits. In the adjacent model fi depends on i:th bit
and K adjacent bits. If i + K > N the addition is computed modulo N . In
the random model fi depends on the i:th bit and K other randomly chosen
bits. These two variants were originally studied by Kauffman [5]. Wright
et al. [12] further introduced the arbitrary model where fi depends only on
K + 1 randomly chosen bits and not necessarily on the i:th bit.

The values for the component functions are constructed by for each function
sampling 2K+1 values from a random distribution, which usually is Gaussian.
The functions can e.g. be implemented as a look-up table which has one entry
for each of the 2K+1 possible bit strings. The fitness function f is the average
of the component functions.

f(x) =
1

N

N∑
i=1

fi(xi1 , xi2 , . . . , xiK+1
) (5)

Moving in the landscape is done by flipping a single bit of the input string
x.

3.2 Properties

The properties of the N-K landscape varies heavily with the choice of K.
Adjusting the parameter K tunes the ruggedness, i.e. the number of local
optima. The computational complexity of the problem is mostly affected by
the choice of dependency model for the component functions. Surprisingly
the effect on on the statistical properties of the landscape is not as dramatic.
Several results are both available on the complexity of the decision problem of
finding the optimum and other analytical results on describing the landscape.

For different values of K the landscape has different statistical properties.
Altenberger [1] includes a nice summary of known results.

For the case K=0, each component function is independent of the other func-
tions. Consequently, the flipping of one bit either brings you closer to the
optimum or farther away. A simple hill climbing will always find the opti-
mum. If the search is started from a random location the expected number
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of steps to the global optimum is N/2. Naturally the problem is in P.

In case when K = N − 1 each component function is dependent of all of
the bits of the string. Thus, this means that the fitness of each bit string is
statistically independent of its neighbours and the fitness function is equiv-
alent to the random assignments of fitnesses over the bit string space. The
following properties hold.

• The probability that a random bit string is a local optimum is 1
N+1

.

• The expected number of local optima is 2N

N+1
.

• A hill climbing algorithm is expected to hit a local optimum in ln(N−1)
steps.

When 1 ≤ K < N − 1 the component functions depend on some but not all
bits in the string.

• When K is small, many of the bits are the same for the highest local
optima. This correlation decreases when K is increased.

• The average Hamming distance between local optima is approximately

Nlog2(K + 1)

2(K + 1)
.

3.3 Complexity

For different component function models and different values of K the com-
putational complexity varies.

For case when the component functions fi depend on i and its adjacent
neighbours two polynomial time solutions have been presented [11, 12]. Of
these two solutions, Weinberger’s has better asymptotic complexity. The
algorithm is a simple algorithm based on dynamic programming.

Theorem. The N-K optimisation problem with adjacent neighbourhoods is
solvable in O(2KN) steps and is thus in P .

For arbitrary neighbourhoods, i.e. when fi can depend on any bits, the prob-
lem is difficult for K ≥ 1. The problem can be reduced to the NP-complete
problem MAX2SAT, where a boolean formula in conjunctive normal form
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(CNF) is given and the clauses can contain at most two literals. The objec-
tive is to maximise the number of true clauses.

Wright et al. [12] give the following reduction. N is chosen to be the max-
imum of the number variables and number of clauses. Each clause is allo-
cated a term fi and each variable in the CNF formula a position in the string.
The component functions fi encode the boolean function their corresponding
clause express. Let 1 correspond to true and 0 correspond to false. The value
of f will be the number of true clauses in the CNF formula. Thus, we have
established the following.

Theorem. The N-K optimisation problem with arbitrary neighbourhoods
is NP-complete for K ≥ 1.

Clearly, in the case of random neighbourhoods when K ≥ 2, MAXSAT can
again be encoded easily because each component function has at least two
free variable dependencies which can be used to encode the clauses [12].

Theorem. The N-K optimisation problem with random neighbourhoods is
NP -complete for K ≥ 2.

Weinberger [11] independently proved the same for K ≥ 3 with a reduction
to 3SAT. When K = 1 the problem again becomes polynomial [12].

Theorem. The N-K optimisation problem with random neighbourhoods is
polynomial K = 1.

Wright et al. [12] have investigated how well the optimisation problem can
be approximated. The arbitrary N-K optimisation problem is similar to the
MAXGSAT problem. In the MAXGSAT problem one is given a conjunction
Boolean expressions which can be in any form. The objective is to maximise
the number expressions.

In the paper an algorithm is developed which for each input bit maximises
the average value of the functions. The result is an algorithm which can be
seen in Figure 1. A BDD implementation of algorithm could possibly fair
well as the algorithm focuses on manipulating sets of binary strings

Theorem. The approximation threshold for the algorithm with K ≥ 2 is at
most 1− 1

2K+1 .

The upper bound follows from simple reasoning concerning the relation of
the average value of f to the optimum. However, as the problem is so similar
to the MAXGSAT problem, it is unlikely that a significantly better approx-
imation threshold will be found.
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function N-K-OPTIM () : (bit string) =
// s is the approximately optimal string
// S is initialised to the set of all N-bit strings
// and evolves as the bits of S are assigned;
// eventually, S = {s}.

for i from 0 to N − 1 do
S0 ← subset of S where the i:th bit is 0
M0 ← average of f over S0

S1 ← subset of S where the i:th bit is 1
M1 ← average of f over S1

if M0 > M1 then
s[i] ← 0
S ← S0

else
s[i] ← 1
S ← S1

od
return s //Return the approximate string

Figure 1: Approximating the N-K optimisation problem.

4 Optimisation Problems

Optimisation problems are very common in computer science. A university
level basic algorithms course will consider many optimisation problems and
their solutions. It will soon be clear for the eager student that while some
problems easy to solve, for others an efficient solution has eluded researchers
for decades.

In the following we will discuss two well-known optimisation problems: the
travelling salesman problem (TSP) and ASSIGNMENT. The problems are
in many ways similar but they have crucial difference. TSP is NP -complete
while ASSIGNMENT is in P .

4.1 Travelling Salesman

Formally an instance of the travelling salesman problem is an n × n matrix
(aij), where each element is greater than zero. In most cases the matrix
is considered to be symmetric but not in all. The problem is to find the
permutation π of {1, . . . , N} such that

∑n
i=1 aπ(i),π(i+1) (where by π(n + 1)
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we mean π(1)) is minimised.

TSP is one of the most studied NP -complete problems. It belongs to the
category problems for which no polynomial approximation scheme is possible
unless P = NP [7].

TSP was one the first combinatorial optimisation problems to which the
probabilistic methods developed for spin glasses were applied. Some rather
interesting results have been achieved.

When the links aij are considered as uniformly distributed random variables
on [0, 1] the length of the tour, with probability one, in the large limit is
l = 2.08. Consult e.g. [6] for more details on the calculations.

The landscape of the TSP has also undergone intensive study. Stadler and
Schnabl [10] have studied statistical properties of the TSP landscape for both
the symmetric and the asymmetric case. Two different neighbourhoods are
studied: transpositions and inversions. Transpositions just exchanges two
cities in the tour. The inversion [s, t] not only exchanges the two cities but
also reverts the paths from s to t.

The study used random walks and other statistical analysis to examine the
landscapes. Surprisingly, the landscape of TSP is fairly regular. It is a model
of a so called AR(1) process for both neighbourhoods. This means that most
measure in the landscape can be very well approximated with a Gaussian
distribution. For asymmetric TSP the result is almost the same. When
transposition is used the result is the same. With inversions the result is
more complicated. The landscape is an AR(1) landscape with a superimposed
random behaviour.

4.2 Assignment

The assignment problem is quite similar to TSP with the important difference
that it is in P . Formally an instance of ASSIGNMENT is a n×n matrix aij

where aij ≥ 0. The problem is to find a permutation π on {1, 2, . . . , n} such
that

E∗
n =

n∑
i=1

ai, π(i) (6)

is minimised.

As can be seen from above the formulation is very similar to TSP. The
problem has also been analysed with probabilistic methods borrowed from
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statistical mechanics. If the aij are drawn from a common probability density
ρ(a) it has been proved that

limn→∞〈E∗
n〉 =

π2

6
. (7)

When the aij are drawn from an exponential distribution it has been shown
that in the finite case the average optimum is

〈E∗
n〉 =

∑

k

= 1n 1

k2
. (8)

Surprisingly, the correlation of the landscape is the same as for TSP [9]. Thus,
simple statistical properties cannot completely characterise the hardness of
a problem.
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Z. Michalewicz, editors, Handbook of Evolutionary Computation. Oxford
University Press, Oxford, 1997.

[2] Francisco Barahona. On the computational complexity of Ising spin
glass models. Journal Physic A, 15:3241–3253, 1982.

[3] Sorin Istrail. Statistical mechanics, three-dimensionality and np-
completeness - I. universality of intractability for the partition function
of the Ising model across non-planar lattices (extended abstract). In
Proceeding of the 31st ACM Annual Symposium on the Theory of Com-
puting (STOC 2000), pages 87 –96. ACM Press, 2000.

[4] Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algo-
rithms for the Ising model. SIAM Journal on Computing, 22:1087–1116,
1993.

[5] Stuart Kauffman. The Origins of Order. Oxford University Press, New
York, 1993.

[6] Marc Mezard, Giorgio Parisi, and Miguel Angel Virasoro. Spin Glass
Theory and Beyond. World Scientific, Singapore, 1987.

[7] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
Reading, Massachusetts, 1994.

12



[8] Christian M. Reidys and Peter F. Stadler. Combinatorial landscapes.
Unpublished research report.

[9] Peter Stadler. Correlation in landscapes of combinatorial optimization
problems. Europhysics Letters, 20:479–482, 1992.

[10] Peter Stadler and Wolfgang Schnabl. The landscape of the travelling
salesman problem. Physics Letters A, 161:337–344, 1992.

[11] Edward D. Weinberger. NP completeness of Kauffman’s N-k model.
Technical Report 96-02-003, Santa Fe Institute, Santa Fe, USA, 1996.

[12] A. H. Wright, R. K. Thompson, and J. Zhang. The computational com-
plexity of N-K fitness functions. IEEE-EC, 4(4):373, November 2000.

13


