SPECTRAL ANALYSIS OF LANDSCAPES*

PETTERI KASKI

1. INTRODUCTION

Fitness landscapes are mathematical structures of current interest in various dis-
ciplines ranging from theoretical biology to combinatorial optimization. Formally,
a fitness landscape consists of three components [9]:

1. a set V of configurations;
2. a notion W of neighbourhood, nearness, distance, or accessibility on V; and
3. a fitness function ¢ : V = R.

Typically we can assume that the pair (V,)V) has the structure of a finite undi-
rected graph (which we shall call the configuration graph of the landscape), in
which the configurations are the vertices, and the edges encode the symmetric “is
a neighbour”-relation.

Under the previous assumption a fundamental observation is that we can view
the fitness function 1 as a vector in RVI, at which point the question arises whether
it is possible to use the machinery of algebraic graph theory [5] to study % via the
configuration graph.

Grover [7] first observed that many combinatorial optimization problems, when
formulated as landscapes over a suitable configuration graph, have the property that
the fitness function satisfies a difference equation which constrains its structure. In
the language of algebraic graph theory this property translates to saying that the
(zero-mean) fitness function, when viewed as a vector in RV is an eigenvector of
the configuration graph Laplacian. Such landscapes are called elementary [9].

In this manuscript we (1) illustrate the analysis of elementary landscapes by
studying landscapes associated with the not-all-equal satisfiability problem (NAE-
SAT) and the symmetric traveling salesman problem (symmetric TSP), both of
which are NP-hard optimization problems [4]; and (2) survey some of the generic re-
sults that constrain the structure of elementary landscapes. These include Grover’s
results on the local minima and maxima of the fitness function and on the behaviour
of greedy local search [7]; and the recent discrete nodal domain theorems [2], from
which an upper bound on the number of nodal domains in an elementary landscape
can be obtained.

The subsequent treatment is organized as follows. Section 2 contains the presup-
posed definitions and results. Section 3 studies two types of configuration graph:
the n-dimensional cube, and the Cayley graph of the symmetric group generated
by the set of all transpositions. These are the configuration graphs of the NAESAT
and symmetric TSP landscapes, respectively, whose elementarity is established in
Section 4. The final two sections review generic structural results on elementary
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landscapes. Section 5 presents Grover’s results, and Section 6 outlines the discrete
nodal domain theorems.

2. PRELIMINARIES

2.1. Terminology for graphs. We briefly recall standard graph-theoretic termi-
nology. (See [3, 5] for further reference.)

A (finite undirected) graph is a pair X = (V, E), where V is a nonempty finite
set of wvertices, and F is a set of unordered pairs of distinct vertices called edges.
We write V(X) and E(X) for the vertex and edge sets of a graph X, respectively.

The number of vertices in a graph is the order of the graph. Two vertices are
adjacent if they are connected by an edge. A vertex is isolated if it is not adjacent
to any other vertex. The number of vertices adjacent to a vertex is the degree of the
vertex. We denote by deg(u) the degree of u. A graph is (k-)regular if all vertices
have the same degree (k).

A graph Y = (V',E'") is a subgraph of a graph X = (V,E) if V' CV, E' C E,
and E' contains only edges with both endpoints in V.

A walk in a graph is a nonempty sequence of vertices with the property that there
is an edge between every pair of successive vertices in the sequence. The length of
a walk is the length of the sequence minus one. A path in a graph is a walk with no
repeated vertices in the sequence. The first and last vertices of a path are said to be
connected by the path. A graph is connected if every pair of vertices is connected
by a path. A connected component of a graph X is a connected subgraph that is
not a proper subgraph of a connected subgraph of X. Thus, a graph is connected
if and only if it has one connected component. The diameter of a connected graph
is the maximum length of a shortest path connecting two vertices.

The adjacency matriz A(X) of a graph X is the matrix with rows and columns
indexed by the vertices of X such that the entry at row u, column v is defined by

Afu,v] = 1 if u and v are adjacent; and
"7 10 otherwise.

In particular, the diagonal entries in A(X) are 0.

The incidence matrix B(X) of a graph X is the matrix with rows and columns
indexed by V(X) and E(X), respectively, such that the entry at row u, column
{v,w} is defined by

1 ifue {v,w}; and
0 otherwise.

B[ua{vaw}] = {

If we direct the edges of a graph X by assigning for each edge {u,v} either u
or v as the start vertex, then we obtain a directed incidence matriz D(X) from
the incidence matrix B(X) by reversing in each column the sign of the entry that
corresponds to the start vertex.

2.2. Matrix theory. This section reviews the standard results from linear algebra,
that are required in what follows. (The results here are mostly extracted from
Chapter 8 of [5]. For a general reference on linear algebra, see for example [6].)
The characteristic polynomial of a real square matrix A is defined by p()\) =
det(A — AI). The zeros of the polynomial p()\) are the eigenvalues of A. The
(algebraic) multiplicity of an eigenvalue A is the multiplicity of \ as a zero of p.
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An n x n real matrix has n eigenvalues, some of which may occur with multiplicity
greater than one, and some of which may be complex.

A vector z # 0 that satisfies the equation (A — A\I)z = 0 is called an eigenvector
of A. All eigenvectors associated with an eigenvalue A together with the zero vector
form a vector space, called the eigenspace of X\. The (geometric) multiplicity of an
eigenvalue A is the dimension of the corresponding eigenspace.

Theorem 2.1. Let A be a real symmetric matriz. Then,

(i) the eigenvalues of A are real numbers; and
(ii) eigenvectors associated with distinct eigenvalues are orthogonal.

Theorem 2.2. Let A be a real symmetric n x n matriz. Then, R™ has an or-
thonormal basis consisting of eigenvectors of A.

A real symmetric n x n matrix A is positive semidefinite if uT Au > 0 for all
u € R”.

Theorem 2.3. A real symmetric matriz A is positive semidefinite if and only if
its eigenvalues are nonnegative.

Theorem 2.4. A real symmetric matrix A is positive semidefinite if and only if
there exists a real matriz B such that A = BT B.

Theorem 2.5. Let B be a real m x n matriz. Then,

dimKer B +1tk B =n.

Corollary 2.6. Let B be a real m x n matriz. Then,
(i) Ker B = Ker BTB; and
(ii) Ker BT = Ker BBT; and

(iii) tk B =rk BT =k BTB = rk BBT.

The spectrum of a matrix A is a list of all of its eigenvalues together with their
multiplicities. The spectral radius p(A) of a matrix is the maximum of the moduli
of its eigenvalues. The spectrum of a graph X is the spectrum of its adjacency
matrix A(X).

2.3. The Laplacian of a graph.

Definition 2.7. Let D be a directed incidence matrix of a graph X. The Laplacian
of X is the matrix L(X) = DDT.

The Laplacian is positive semidefinite by Theorem 2.4, and hence its eigenvalues
are nonnegative by Theorem 2.3. Zero is always an eigenvalue of the Laplacian,
and its multiplicity is the number of connected components in the graph as the
corollary to the following theorem demonstrates.

Theorem 2.8. Let X be a graph with n vertices and ¢ connected components, and
suppose that D is an directed incidence matriz of X. Then, tk D = n — c.

Proof. By Theorem 2.5 and Corollary 2.6 it suffices to prove that dim Ker DT = ¢.
Select any vector z such that DTz = 0. By Definition of D we have z, — 2z, = 0
for every directed edge uv of X. Thus, z must be constant on every connected
component of X. Since there are ¢ connected components, we have dim Ker DT =
C. ([l
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Corollary 2.9. Let X be a graph with n vertices and ¢ connected components. If
L is the Laplacian of X, thentk L =n — c.

Proof. Let D be a directed incidence matrix of X. Theorem 2.8 givestk D = n —c,
which combined with Corollary 2.6 gives tk L =tk DDT =tk D =n —c. O

The Laplacian is independent of the way the edges are directed as the following
theorem demonstrates.

Theorem 2.10. Let X be a graph, and denote by A(X) the diagonal matriz whose
diagonal contains the degree of each vertex in X. Then,

) L(X) = A(X) — A(X).

Proof. Let D be any directed incidence matrix of X. Then,

deg(u) if u =wv; and

DD"[u,v] = Y Dlu,{s,t}]D"[{s,t},v] = —1 if {u,v} € E(X); and
{s,t}eE(X) 0 otherwise,
for all vertices u,v € V(X), which establishes the claim. O

For k-regular graphs A(X) = kI, so we obtain the following immediate corollary:

Corollary 2.11. If X is a k-regular graph, then the adjacency matriz A(X) and
the Laplacian L(X) have identical eigenspace structure. The eigenspace of L(X)
associated with eigenvalue A corresponds to the eigenspace of A(X) associated with
etgenvalue A4, where

(2) AL =k—Aa.

3. CONFIGURATION GRAPHS

3.1. The n-cube Q%. Denote by Z% the set of vectors z = (z1,%2,... ,%,) of
length n over {0,1}. The all-zero and all-one vectors are denoted by 0 and T,
respectively. The Hamming distance between two vectors z,y € Z7 is the quantity

dy(z,y) =[{i € {L,... ,n} : = #yi}|-

-,

The Hamming weight of a word z € Z is the quantity wg(z) = dy(z,0).

Definition 3.1. The n-cube QF is the graph with vertex set Z%; two vertices x,y €
Z% are connected by an edge if and only if dg(z,y) = 1.

Example 3.2. The graphs Q3, Q2%, Q3, and Q4 are depicted below.
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001 101
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000 100

Theorem 3.3. The n-cube QF is a connected bipartite n-regular graph with diam-
eter n and order 2™.

Proof. The graph is bipartite since edges exist between vertices of even and odd
Hamming weight only. The other properties are obvious. O

The spectrum of Q% is well-known. Associate with each z € Z% a function
W, : Z% — {—1,1} defined by the rule z — (—1)Xi=1%:% for all + € Z}. The
functions {W, : z € Z%} are known as the Walsh functions. The weight of a
Walsh function W, is wg(2).

Example 3.4. The Walsh functions for n = 3 are given in the table below.

T 000 001 010 011 100 101 110 111
Wooo 1 1 1 1 1 1 1 1
Woo1 1 -1 1 -1 1 -1 1 -1
Wo1o 1 1 -1 -1 1 1 -1 -1
Wour 1 -1 -1 1 1 -1 -1 1
Wioo 1 1 1 1 -1 -1 -1 -1
Wio1 1 -1 1 -1 -1 1 -1 1
Wiio 1 1 -1 -1 -1 -1 1 1
Wi 1 -1 -1 1 -1 1 1 -1

Theorem 3.5. The normalized Walsh functions W, = 2-"/2W, give an orthonor-
mal basis of R2" .

Proof. Select any x,z € Z3. Let j1,. .., juy(z) be the indices of the 1-bits in 2. In
other words, z; = 1 if and only if j € {j1,... , juwy(z)}- Observe that W, (z) is the
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parity of the bits z;,,... ,z;, ., an even number of 1-bits gives W.(z) = 1, and
an odd number of 1-bits gives W, (x) = —1. Consequently,

nif z = 0; and
3 W.(z) = ’
®) Zn +(2) {0 otherwise,
TELY
since for z # 0 there are equally many = with even and odd parities in z;, , . .. , Ty (o)

Now let z,2' € Z%. By abuse of notation we denote by W, also the column vector
whose entries W, (z) are indexed by z € Z%. We compute

@) WIW. =Y We@)Wa(z) = Y (-1 =G = 3 Woou(2),

TELY TELY TELY

where @ denotes componentwise addition modulo 2. Combining (3) and (4), we
obtain

2" if z = 2'; and

WIW. = ,
0 otherwise.

Thus the vectors are mutually orthogonal, and hence linearly independent. We
obtain a normalized basis by setting W, = 2-"/2W,. O

Theorem 3.6. Let A be the adjacency matriz of Q%. Then, the distinct eigenvalues
of A are A\, = n — 2k, where k = 0,1,...,n, and A\ has multiplicity (Z) An
orthonormal basis for the eigenspace of A, is given by the weight k mnormalized
Walsh functions.

Proof. Select any z € Z3, and let ji,...,ju,(z) be the indices of the 1-bits in 2.

Fix a vertex « € Z% of QF. The vertices adjacent to z are precisely y¥), ... ,y(™,
where

Vi = T; otherwise

foralli=1,...,nand alll =1,... ,n. Thus,

Wz(y(l)) _ WZ(CL') if 1 ¢ {jl;- .. ,ij(z)}; and
—Wz(.CL') ifl e {jl;- .. 7ij(z)}-

Summing over all /, we obtain

n

AW, () =Y W.(yV) = (n — wu (2))W.(2) — wu (2)W.(2) = (n — 2wy (2))W. ().

I=1
Since x was arbitrary, AW, = (n — 2wg(2))W,. The claim now follows from
Theorem 3.5 and the fact that there are (}) binary vectors z € Z§ with wy(2) = k
forall k=0,...,n. O

Example 3.7. The reader is invited to verify that the Walsh functions given in
Example 3.4 are indeed the eigenfunctions of the graph Q3 given in Example 3.2.
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3.2. The Cayley graph I'(S,,,T;,). Recall that a permutation of a nonempty set
E is a bijection of E onto E. The symmetric group Sy, on {0,1,...,n — 1} is the
group formed by the set of all permutations of {0,1,... ,n — 1} with composition
of permutations as the group operation. A transposition is a permutation that
swaps two points and keeps the remaining points fixed. We denote the set of
transpositions of {0,1,...,n — 1} by T},. The transposition that exchanges i and
js 1 # j,is denoted by (i 7).

Definition 3.8. The Cayley graph I'(S,,,T,,) is the graph with vertex set S, ; two

vertices w1, my € Sy, are connected by an edge if and only if 7, 17y € Ty,.

(The edge set is well-defined since 7 'm; € T, if and only if 77 'my € T, as T,
is closed under taking of inverses.)

Example 3.9. The Cayley graphs I'(S»,T»), I'(Ss, T3), and I'(Sy4, T4) are depicted
below.
021 201

o—=o 012 210
01 10

102 120
0213 0231 (321

1230 4359 3120

Theorem 3.10. The Cayley graph T'(S,,T,) is a connected bipartite (g‘) -reqular
graph with diameter n — 1 and order n!.

Proof. Regularity is clear. The graph is connected since transpositions generate
the symmetric group. The graph is bipartite since the endpoints of every edge
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consist of an even and an odd permutation. The diameter is at most n — 1 since

n — 1 transpositions suffice to transform any permutation of {0,1,...,n — 1} into
another. On the other hand, transforming for example the identity permutation to
an n-cycle requires n — 1 transpositions. O

The spectrum of I'(S,,, T},) is known [1, 8] together with the associated eigenspace
structure [10], however, its description requires a major excursion into the repre-
sentation theory of finite groups, upon which we shall not embark in the present
manuscript.

4. TWO ELEMENTARY LANDSCAPES

This section presents the elementarity proofs of Grover [7] for landscapes asso-
ciated with NAESAT and symmetric TSP. (The proofs have been converted from
their original form to the graph Laplacian formalism.)

4.1. Not-all-equal satisfiability. Let V' = {v1,...,v,} be a set of n binary
variables. A literal is either a variable v € V or its complement ©. A clause is a set
of three literals. A truth assignment is a vector x € Z%, which assigns the value z;
to the variable v; for all 4 = 1,... ,n. A truth assignment satisfies a clause if and
only if all of its literals do not have the same truth value, where it is assumed that
the truth value of a complemented variable v is the opposite of the value assigned
to v.

Definition 4.1. The decision problem NOT-ALL-EQUAL SATISFIABILITY (NAE-
SAT) asks, given a set C of clauses over n binary variables, whether there exists a
truth assignment to the variables that satisfies every clause in C.

In what follows we assume that the clauses which contain both a variable v and
its complement ¢ are removed from a NAESAT instance since they are obviously
satisfied under any truth assignment.

A n-variable NAESAT instance defines in a natural way a landscape in which
the configurations are the distinct truth value assignments, the configuration graph
is the n-cube @7, and the cost of a truth value assignment 2 € Z% is the number of
clauses not satisfied by x. We denote the cost of by ¥ (z). Thus, ¥(x) > 0 with
equality if and only if x satisfies all clauses in the instance.

The elementarity proof proceeds in two stages. First, we calculate the mean
cost of a configuration (Theorem 4.2), and then establish that the zero-mean cost
function is an eigenfunction of the Laplacian of Q% (Theorem 4.3).

Theorem 4.2.

1 C
PICESS
TELY
Proof. Denote by 9¢, (x) the cost of a single clause C; from C. In other words,

0 if z satisfies C;; and
1 otherwise.

¢Kh($):= {
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Since exactly 2 of the 8 possible truth value assignments to the three literals in a
clause satisfy it, we have

IC| IC]
D@ =3 valx)=) 2" -2=|Cl2" %
zEZD i=1 z€Z2 i=1
Divide both sides by 2™ to obtain the claim. O

Now define the zero-mean cost function by
¥(z) = 9(x) - |C|/4.
Theorem 4.3. Let L be the Laplacian of the n-cube Q%. Then,

Lijp(z) = 44 ().
for allx € Z5.

Proof. Denote again by ¢, (x) the cost of a single clause C; from C. From (1) and
the definition of )% we obtain for every z € Z5:

IC|

G)  Ld@= Y (@@ -d@) =) D (o) v ()

da (2,y)=1 i=1 dp (2,y)=1

Z (Z/)C, (.CL') - 'l:[}Ci (y)) =

{—1 if x satisfies C;; and
dH (z,y):l

3  otherwise,

or more compactly
6) > (W (@) — e, (y) = 4e,(2) — 1.
du(z,y)=1
Substituting (6) into (5), we obtain
Lip(z) = 4(z) - |C] = 4 ().
O

Thus, by Theorem 3.6 and Corollary 2.11, 1) is a vector in the eigenspace of L
spanned by the weight 2 Walsh functions.

Corollary 4.4. For any NAESAT instance over n variables, the cost function 1
can be written in the form

v@ = i)+ ¥ amy),

wr (y)=2
where ay € R.
Computing the coefficients a, is straightforward because the coefficients for a

clause set C' are obtained as a sum of the coefficients for the individual clauses, i.e.,
the transformation from clauses to coefficients is linear.
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4.2. The traveling salesman problem. Let A be any n X n nonnegative inte-
ger matrix whose rows and columns are indexed by n cities, which we shall label
{0,1,...,n —1}. The entry a;; of A at row 4, column j is the distance from city
i to city j. The distances are assumed to be symmetric, that is, a;; = a;; for all
i, .

A tour is a permutation 7 € S, of the n cities. The length of a tour 7 is

I(7) = @r(0),r(1) + Cr(1),m(2) + = F Grn(n=2),x(n—1) T Gr(n—1),x(0)-

Definition 4.5. Given a symmetric nonnegative intercity distance matrix A, the
SYMMETRIC TRAVELING SALESMAN PROBLEM (symmetric TSP) asks for the length
of the shortest tour (that visits all cities exactly once and finally returns to the ini-
tial city).

One possible way to associate a landscape with the symmetric TSP problem is to
consider the tours as the distinct configurations, and regard two tours as adjacent
if one can be obtained from another by transposition of two cities. The induced
configuration graph in this case is precisely the Cayley graph I'(S,,,T})-

The natural cost of a tour 7 is its length, that is, we define the cost function ¢
by setting (7)) = I(w) for all 7 € S,,.

We next show that the resulting landscape is elementary, and start by computing
the mean cost of a configuration:

Theorem 4.6.

g X = Y

TESH i<j

Proof. Fix any 4,j such that 0 < i < j < n — 1. There are exactly n(n — 2)!
permutations 7 € S, for which 7(k) = ¢ and w(k + 1) = j hold for some 0 < k <
n — 1. (The addition k + 1 is performed modulo n.) By symmetry, both a; ; and
a;,; appear exactly n(n — 2)! times in the sum on the right hand side of (7). Thus,

1 1 2
o D () = o > n(n —2)ai; +aji) = S 2 i

TESn i<j i<j
([l
The zero-mean cost function is thus defined by
- 2
®) Plm) = blm) = —= 3 ai.
i<j
for all # € S,.

Theorem 4.7. Let L be the Laplacian of the Cayley graph T'(S,,T,). Then,
Lip(m) = 2(n — 1)y(x).
forallme S,.

Proof. Fix any tour w € S,,. By definition of the Laplacian
Lyp(m) = Y () — 9 (x(i §))-
i<j
Select any i, j such that 0 < 4,7 <n — 1, and put &;; = 9(7) — (n(i j)). For con-
venience we denote ar(;), () simply by /; ;. Moreover, all arithmetic on the indices
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1,7 is implicitly assumed to be modulo n to keep the notation simple. Without loss
of generality we may take I;; = 0 for all i. When j — ¢ # £1, we have (Case A on
the figure below)

0ij = (lic1s + i Hli—1y + ) — (i +H i +li—1 + lijg)-
When j — i = +1, we have (Case B on the figure below)

0ij = (lic1,i + lijipr + 1) — (Licaj + 1+ lijg)-

B
® =@ =@ e d
i-1 i j j*+1
i-1 [ j j*+1

Thus, an expression valid for all 4, (including i = j) is

Oij =(lie1i + lijivr + 1,5 + lgrn) — (Timag + liirr + o1+ 1ij1a)
= (Qjit1 + Aji—1) (i + 1ig),

where Ay ; =1if k =1, and A; = 0 otherwise. Summingoverall 0 <14 < j <n-1,
it follows that

L) = X0 = 5 8 = 5 ()~ 4 by — 400)
i<j 1,5 12y
=2(n— 1)y(x) —4Y_li; =2(n—1)(n),

i<j

where the last equality is obtained using (8). O
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5. GROVER’S RESULTS ON ELEMENTARY LANDSCAPES

Throughout this section we assume that (X, ) is an elementary landscape, where
X = (V, E) is the configuration graph, and 1) is the cost function, whose zero-mean
counterpart is denoted by 9. L denotes the Laplacian of X, and A > 0 is the
eigenvalue of L associated with 1, that is, Li) = M. (Note that we assume X > 0;
the case A\ = 0 is omitted from consideration since L) = 0 implies that 1) is constant
on each connected component of X.)

5.1. Local minima and maxima. Elementary landscapes have the interesting
property that the local minima and maxima are constrained to be below and above
the average cost, respectively.

Definition 5.1. A vertex u € V' is a local cost minimum if 1 (u) < 9(v) holds for
all {u,v} € E. Similarly, u € V is a local cost mazimum if (u) > ¢ (v) holds for
all {u,v} € E.

Theorem 5.2. If u € V is a local cost minimum, then Y(u) <0. IfueVisa
local cost mazimum, then ¢ (u) > 0. Equality holds if and only if u is isolated.

Proof. We consider only the case of a local cost minimum; the proof for a local cost
maximum is similar. If u is a local cost minimum, 9 (u) — 1 (v) = ¥ (u) — ¥ (v) < 0
for all {u,v} € E. (Note that if u is isolated, i.e., has no adjacent vertices, then u
is always a local minimum and maximum. Elementarity forces then ¢(u) = 0.) By

definition of the Laplacian and the fact that (X, ) is elementary,

Y (@) = Pw)) = Lip(u) = M(u).

{u,w}€EE
So, since A > 0, we have that ¢)(u) < 0. Equality holds if and only if deg(u) = 0. O

5.2. Behaviour of greedy local search. The following theorem and subsequent
discussion demonstrate that greedy local search on an elementary landscape will
relatively quickly reach an average cost configuration, no matter on what configu-
ration the search is started.

We discuss only greedy local search for the minimum; local search for the maxi-
mum is handled similarly.

The following claim demonstrates that a nonisolated vertex with positive cost
always has a neighbour with lesser cost. (So, greedy search for the minimum will
by definition proceed to a vertex with at most that cost.)

Theorem 5.3. For every nonisolated vertex u € V, there exists a vertex v € V
adjacent to u such that

00 < (1= gy )P0

Proof. Since deg(u) > 1, there exists a {u,v} € E such that

- - 1
Q 9u) = 5(0) > s D)
for if no such {u,v} € E exists, then

L) = deg(u) 31 < ()
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a contradiction. So, since Li)(u) = M) (u), we obtain from (9)

00 < (1= gy )P0

Denote by A the maximum degree of a vertex in X. Since

(- ) < (-3)

for all nonisolated vertices u € V, we obtain the upper bound
A m

hv) < (1— b(u

iw < (1-31) v
on the cost of the current configuration v € V' after m steps of greedy local search
that started from a nonisolated vertex v € V. In other words, the cost of the
current configuration must decay exponentially fast (in m) towards an average cost
configuration.

If § is the minimum difference in cost between neighbouring configurations, we
obtain that an average cost configuration is reached in m steps, where

log § — log 9 (u)
log(1—3)

6. THE DISCRETE NODAL DOMAIN THEOREMS

Let X = (V, E) be a graph, and suppose y € RIVI. A strong positive (negative)
sign graph of y on X is a maximal, connected subgraph of X whose vertices u
satisfy y, > 0 (yu < 0). A weak positive (negative) sign graph of y on X is a
maximal, connected subgraph of X whose vertices u satisfy y, > 0 (y,, < 0).

Let L be a real symmetric matrix with nonpositive off-diagonal elements. Sup-
pose the rows and columns of L are indexed by I. Associate with L a graph I'y,
with vertex set I and edge set defined by {u,v} € E if and only if Afu,v] < 0.
(In particular, we may take L to be the Laplacian of a graph X, in which case
T =X.)

The discrete nodal domain theorems (which appear as one theorem below) bound
the number of weak and strong sign graphs of eigenvectors of L on I'z:

Theorem 6.1 ([2]). Let A1 < A2--- < Ajp| be the eigenvalues of L, and suppose
Am Satisfies

)\m—l < /\m = )\m—l—l = )\m—i-r—l < )\m—i-r-
Then, any eigenvector associated with A\, has at most m+1r — 1 strong sign graphs
and at most m weak sign graphs on I'r,.

In particular, if we let L = L(Q%), then we obtain the following corollary:

Corollary 6.2. The zero-mean cost function 1) of any NAESAT instance over n
variables has at most 1 +n + (g) strong sign graphs, and at most n + 2 weak sign
graphs on Q%.

Unfortunately, the previous corollary does not imply anything about the local
minima and maxima of 1 on Q%.
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