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Motivations

• Landscape properties seem to play an important 
role in combinatorial optimization, e.g. TSP 
operations.

• One would like to gather “moderate” amount of 
data about the landscape and infer properties of 
the landscape and select best possible optimization 
strategy (Weinberger, 1990).

• Discovery of connections between landscape and 
complexity theory (Weinberger, 1990).



Ruggedness

• Intuitively, ruggedness is the opposite of 
“smoothness” (Reidys & Stadler, to appear).

• Ruggedness can be quantified by the correlation of 
between adjacent configurations.

• The number and distribution of local minima can 
provide another characterization of ruggedness.

• Correlation length conjecture bridges the above 
two approaches.

• Nodal domain theorem.



Random Walk on the Landscape

• Weinberger (1990) proposes to consider fitnesses 
of configurations as random variables and to 
obtain their statistical properties.

• He uses random walk on the landscape to 
approximate autocovariance function.

• He recognizes that landscapes with exponentially 
decaying autocovariance function are of particular 
interest and proposes the use of “Fourier-like 
decomposition” to study the landscape structure.



Correlation Functions of Landscapes

• The following will present two correlation 
functions on landscapes:
– Random walk correlation function for “time 

series” on vertices.
– Autocorrelation function for partitions of vertex 

pairs.



The Expected Autocorrelation

The expected autocorrelation of the time series 
{f(x0), f(x1), ...} along the walk {x0, x1, ...} on Γ is 
defined as
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where expectations are take over all “times” t and initial 
conditions x0.



The Expected Autocorrelation

Noting that initial conditions are uniformly 
distributed allows a simplification:
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Mean and Variance of Landscape

Definition (Stadler, 1996). For each landscape f:Vω
we define:
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These are functionals of  f. The former is the mean of 
the landscape. The latter is interpreted as the variance 
of the landscape. �2

f=0 if and only if f is constant, i.e. 
for flat landscapes.



Lemma 1 (Stadler, 1996). Let Γ be a regular graph 
and let f:Vω� be arbitrary function. Let {xt} be a 
simple random walk on Γ. Then

Functions on Random Walk

Lemma 2 (Stadler, 1996). Let Γ be a regular graph 
and let f:V×Vω� . Then
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Corollary 1 (Stadler, 1996). Let f:Vω� be a non-
flat landscape on a D-regular graph Γ with adjacency 
matrix A. Then by application of lemma 1 with F=f
and F=f2 and lemma 2 with F(x,y)=f(x)f(y):

Autocorrelation Function on Regular 
Graph
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(Reidys & Stadler, to appear) relaxes the requirement 
that Γ is regular. 
Noting that autocorrelation is invariant under the 
transformation f ω f - <f> and 

Autocorrelation Function
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Eq (4.1) (Reidys & Stadler, to appear). Let T be a 
transition matrix of a reversible Markov process on V
with stationary distribution 0. The expected 
autocorrelation function along a T-random walk on V
is

Autocorrelation Function
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Correlation Functions of Elementary 
Landscapes

Theorem 1 (Stadler, 1996). Let f be a non-flat 
landscape on a D-regular graph Γ and let r(s) be the 
“random walk” correlation function of f. Then f is 
elementary if and only if r(s) is an exponential 
function, i.e., iff r(s) =�s.



Theorem 1: Sketch of Proof

• Express f as decomposition 
• Substitute into r(s) noting orthogonality and 

normalization constraints.
• Define normalized amplitudes
• Simplify:
• r(t) is exponential iff all nonzero Ai belong to 

single eigenvalue �k of -�.
• This is the case only when 
• For some eigenvector of -�, thus complying 

with elementarity (lemma 3 of (Stadler, 1996))
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Correlation Length

For elementary landscape a single parameter 
determines the correlation function:
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Relaxing the Regularity

Again, the assumption of D-regularity can be 
relaxed to obtain for transition matrix T:
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Autocorrelation Functions on Partitions

Similar results have been derived for relations on 
V�V.
Definition 4.1 (Reidys & Stadler, to appear). Given 
a relation R on V�V, the autocorrelation function of f
w.r.t R is:
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If the partition of V�V is “nice”, the correlation 
function has “useful” algebraic properties.



Table 1(Stadler, 1996). Compare antisymmetric TSP with transpositions 
and inversions. Any other peculiarities?



Ruggedness and Local Optima

Local minima are configurations
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Local maxima are defined by replacing f with -f.

A measure of ruggedness can be based on the growth 
of the number of local optima Mf. Landscape is 
rugged if Mf.scales exponentially with a measure of 
system size n.



Correlation Length Conjecture

Let N(r) denote number of vertices in a 
neighborhood with radius r.
(Stadler, P. F. & Schnabl W., 1992):

V
optimum} Prob{local N(l)==Ψ

That is one local optimum on a patch with radius of 
correlation length. Said to be supported by numerical 
data (3-opt!).



Growth of Mf

Estimates of Mf are available for some 
models.
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Table 3 (Stadler, 1995). A’s are similar, but larger than expected from 
correlation length conjecture (compare to last line).



Basins

Assume that a “search space” E can be split into 
partition Ei, i=1,..,Mf of subspaces which are the 
attraction basins of the local maxima mi. 
Furthermore, let there be an algorithm which is able 
to find from any x�E the corresponding local 
maximum. Steepest ascent is a suitable candidate, 
but may be ambiguous, if several neighbors have 
same fitness value. Stringent definition of basin is an 
open question.



Sampling for the Basins

The problem is to estimate the probability of hitting 
every basin with a random sample of size m.
Proposition 4.1 (Garnier,& Kallel, 2000). If we 
denote by υj = |Ej|/|E| the normalized size of the j-th 
attraction basin, then:
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gives the probability of having at least one point of 
the random sample in each basin.



Sampling for the Global Optimum

Corollary 4.3 (Garnier,& Kallel, 2000). Assuming 
υj´s are jointly uniformly distributed over a simplex 
of N and Mf >> 1 and m=aMf
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meaning that O(Mf
2) points provide a finite chance to 

find the the basin of global optima.



Estimating the Basin Distribution

Let βj be the number of minima detected with j
points. Let Hγ signify that υj´s can be described as 
(Z1/TN,…ZN/TN) with Zj following the distribution
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Estimating the Basin Distribution

Proposition 5.1 (Garnier,& Kallel, 2000) Under 
Hγ the expected values βj,γ = E(βj) of the βj’s can be 
computed in the asymptotic framework N>>1, 
m=aMf
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This results can be used to compute estimate for 
the number of local minima from observed βj’s.



Fitness Barriers and Saddle Points

The local minima are separated by saddle 
points and fitness barriers. The fitness barrier 
separating local minima 
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satisfying above minmax condition is 
called a saddle point of the landscape. Barriers 
can be represented as a three with minima at 
leaves and saddle points at internal nodes.
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Figure 4.1 (Reidys & Stadler, to appear)



Figure 3 (Ferreira, Fontanari, & Stadler, 2000). Barrier trees for Low 
Autocorrelated Binary String Problem, Mean Field approximation to 
LABSP, +/- 4-spin glass model and Random Energy Model.



Barriers and Depth

Let’s define the height of lowest saddle point giving 
access to better minimum:
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Now, depth and difficulty are defined over the set of global 
minima τf
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Depth and Difficulty

Depth and Difficulty summarize the energy barriers 
and play a role in the theory of Simulated Annealing. 
However,
Conjecture 1 (Kern,1993). Computing the depth 
function is at least as hard as solving an optimization 
problem.
Conjecture 2 (Kern,1993). Computing the depth 
function is at most as hard as solving the 
optimization problem.

Proofs?



Neutrality

Let Γ be a graph with vertex set V and edge-set E. 
The number of neutral neighbors of x�V is
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which can be studied as a landscape on Γ. Trivial 
neutrality can be obtained by embedding a 
combinatorial optimization problem in a state space 
that is too large, e.g. Graph Matching Problem in 
(Sn,T).



Neutrality in ARL’s
Let
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ν is the expected variance of the family �x across 
given landscape.
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Neutrality in ARL’s
Theorem 4.6 (Reidys & Stadler, to appear). Let F be 
an ARL with coefficients ci, satisfying
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Neutrality in ARL’s

Theorem 4.6 (Cont.) then
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Neutrality in p-Spin model
Corollary 4.7 (Reidys & Stadler, to appear). For a p-spin 
model with coefficients ci satisfying (4.6):
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Neutrality and Ruggedness

The neutrality of p-spin can be tuned to any desired 
value with parameter �0. On the other hand, p can be 
used to prescribe any desired degree of ruggedness 
(�=2p).
Ruggedness and neutrality are independent features 
of (random) landscape.



Some Impressions

• The correlation theory hinges on the Correlation 
Length Conjecture. One should take a serious look 
at that.

• Characterization of the distribution of the local 
minima seems an interesting new direction.

• Neutrality has specific applications but it’s 
relevance to combinatorial optimization is not 
obvious.
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