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Motivations

« Landscape properties seem to play an important
role 1n combinatorial optimization, e.g. TSP
operations.

* One would like to gather “moderate” amount of
data about the landscape and infer properties of
the landscape and select best possible optimization
strategy (Weinberger, 1990).

« Discovery of connections between landscape and
complexity theory (Weinberger, 1990).



Ruggedness

Intuitively, ruggedness 1s the opposite of
“smoothness” (Reidys & Stadler, to appear).

Ruggedness can be quantified by the correlation of
between adjacent configurations.

The number and distribution of local minima can
provide another characterization of ruggedness.

Correlation length conjecture bridges the above
two approaches.

Nodal domain theorem.



Random Walk on the Landscape

* Weinberger (1990) proposes to consider fitnesses
of configurations as random variables and to
obtain their statistical properties.

e He uses random walk on the landscape to
approximate autocovariance function.

* He recognizes that landscapes with exponentially
decaying autocovariance function are of particular
interest and proposes the use of “Fourier-like
decomposition” to study the landscape structure.



Correlation Functions of Landscapes

* The following will present two correlation
functions on landscapes:

— Random walk correlation function for “time
series’ on vertices.

— Autocorrelation function for partitions of vertex
pairs.



The Expected Autocorrelation

The expected autocorrelation of the time series

{f(xy), f(x,), ...} along the walk {x, x, ...} onT 1s
defined as

(FE))) =) (f(x.)),

def
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where expectations are take over all “times” ¢ and 1nitial
conditions x,,.



The Expected Autocorrelation

Noting that initial conditions are uniformly
distributed allows a simplification:
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Mean and Variance of Landscape

Definition (Stadler, 1996). For each landscape f: V' —
we define:

_def ] 2d_fL ) R
f—ﬁ erf(x) O-f_‘V‘ er[f(x) f]Z J=f

These are functionals of f. The former 1s the mean of

the landscape. The latter 1s interpreted as the variance
of the landscape. 0*/=0 if and only if fis constant, i.e.

for flat landscapes.



Functions on Random Walk

Lemma 1 (Stadler, 1996). Let I' be a regular graph
and let f:V—/R be arbitrary function. Let {x,} be a

simple random walk on I'. Then

<F(xf)>x0,t = F

Lemma 2 (Stadler, 1996). Let I' be a regular graph
and let f: V<V —/R . Then

<F<x,+s,xt)>xo,tzﬁ ZFxy) [T



Autocorrelation Function on Regular
Graph
Corollary 1 (Stadler, 1996). Let f: V' —/R be a non-

flat landscape on a D-regular graph I with adjacency
matrix A. Then by application of lemma 1 with F'=f
and F=f° and lemma 2 with F(x,y)=f(x){(y):

()
=7
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where T = (]/D)A



Autocorrelation Function

(Reidys & Stadler, to appear) relaxes the requirement
that I" 1s regular.

Noting that autocorrelation 1s invariant under the
transformation f — f- <f> and

~~/

F=r={f), (F)=0

sy = O )= (f D) (7 (x)
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Autocorrelation Function

Eq (4.1) (Reidys & Stadler, to appear). Let T be a

transition matrix of a reversible Markov process on V
with stationary distribution . The expected

autocorrelation function along a T-random walk on V
1S

?0

(Fwim) IO, 7 0ew (7.77)

O ) Foko  (7.7)

xeV ®0



Correlation Functions of Elementary
Landscapes

Theorem 1 (Stadler, 1996). Let f be a non-flat
landscape on a D-regular graph I and let r(s) be the
“random walk” correlation function of 7. Then f1s

clementary 1f and only 1f 7(s) 1s an exponential
function, 1.e., iff (s) =¢'.



Theorem 1: Sketch of Proof

Express f'as decomposition = a¢,
Substitute 1nto 7(s) noting orthogolnality and

normalization constraints. :

. . def a.

Define normalized amplitudes A4 = ‘ ‘
[4)

Simplify: 7(¢) = (1 A/ D)S jail

1(t) 1S exponent1al iff all nonzero 4. belong to
single eigenvalue A, of -A.

This 1s the case only when [ = (ao / \/ﬂ )1 +@
For some eigenvector of -A, thus complying
with elementarity (lemma 3 of (Stadler, 1996))
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Correlation Length

For elementary landscape a single parameter

determines the correlation function:

def
p=r()=(0-4/D)

Correlation length 1s defined

[0, ifc=0

=3 =L e 20
g



Relaxing the Regularity

Again, the assumption of D-regularity can be
relaxed to obtain for transition matrix T:

r(ty= B, (M)A

[= ()



Autocorrelation Functions on Partitions

Similar results have been derived for relations on
VXV.

Definition 4.1 (Reidys & Stadler, to appear). Given
a relation R on V' XV, the autocorrelation function of f

(f )= ()= 1)

w.r.t R 1s: ‘V‘Z e
p(R) = i - -
R (f ()= SO =])
(x,y)eV

If the partition of V' XV 1s “nice”, the correlation
function has “useful” algebraic properties.



Table 1(Stadler, 1996). Compare antisymmetric TSP with transpositions
and inversions. Any other peculiarities?



Ruggedness and Local Optima

Local minima are configurations

xeV:f(x)L f(y) forall ye N(x)
Local maxima are defined by replacing f with -f.

A measure of ruggedness can be based on the growth
of the number of local optima M. Landscape 1s

rugged 1f M.scales exponentially with a measure of
system size n.



Correlation Length Conjecture

Let N(r) denote number of vertices in a
neighborhood with radius 7.

(Stadler, P. F. & Schnabl W., 1992):

: N(l
Y = Prob{local optimum} = ‘T(‘)
That 1s one local optimum on a patch with radius of
correlation length. Said to be supported by numerical

data (3-opt!).



Growth of M,

Estimates of M; are available for some

models.

def . 1 def
A=lim—InE(M ) E=1/n

n—oo n



Table 3 (Stadler, 1995). A’s are similar, but larger than expected from
correlation length conjecture (compare to last line).



Basins

Assume that a “search space” E can be split into
partition £, i=1,..,M, ot subspaces which are the
attraction basins of the local maxima m,.
Furthermore, let there be an algorithm which 1s able
to find from any x €F the corresponding local
maximum. Steepest ascent 1s a suitable candidate,
but may be ambiguous, if several neighbors have
same fitness value. Stringent definition of basin 1s an
open question.



Sampling for the Basins

The problem 1s to estimate the probability of hitting
every basin with a random sample of size m.

Proposition 4.1 (Garnier,& Kallel, 2000). If we
denote by «, = |E,;|/|E| the normalized size of the j-th
attraction basin, then:

Mf .
p(m):k_ (_1) (1_0(11_”°_O(jk)m

0 ISjIS---SijMf

gives the probability of having at least one point of
the random sample 1n each basin.



Sampling for the Global Optimum

Corollary 4.3 (Garnier,& Kallel, 2000). Assuming
«;’s are jointly uniformly distributed over a simplex

of ~and M, >> I and mZaMf2 then

m—yoo

p(m) — exp(—1/a)

meaning that O(M/# points provide a finite chance to
find the the basin of global optima.



Estimating the Basin Distribution

Let f; be the number of minima detected with j
points. Let A’ signify that «;’s can be described as

(Z/Ty, ...2Z)/Ty) with Z; following the distribution

4
7/ Z;/—le—yg

py(2) = ()

and



Estimating the Basin Distribution

Proposition 5.1 (Garnier,& Kallel, 2000) Under
H’ the expected values p; , = E(f)) of the 5’s can be
computed in the asymptotic framework N>>1,
m=aM¢ as

_., TG+y)  aly?
P =Mir ) @eyyr oM

This results can be used to compute estimate for
the number of local minima from observed f;’s.



Fitness Barriers and Saddle Points

The local minima are separated by saddle

points and fitness barriers. The fitness barrier
separating local minima X,y

f[fc, )?] = min{maxb‘(z) lze p] |p : path from x to j/}

z € X satisfying above minmax condition is
called a saddle point of the landscape. Barriers
can be represented as a three with minima at
leaves and saddle points at internal nodes.



Figure 4.1 (Reidys & Stadler, to appear)



Figure 3 (Ferreira, Fontanari, & Stadler, 2000). Barrier trees for Low
Autocorrelated Binary String Problem, Mean Field approximation to
LABSP, +/- 4-spin glass model and Random Energy Model.



Barriers and Depth

Let’s define the height of lowest saddle point giving
access to better minimum:

B(%)=min{f[%,p]- f(®)|: f(D) < F(D)]

Now, depth and difficulty are defined over the set of global
minima (2,

D=maxB(s)|se Q, |

Y= max{ B(s) s Q ,x . €L L
()= f(x)




Depth and Difficulty

Depth and Difficulty summarize the energy barriers
and play a role in the theory of Simulated Annealing.
However,

Conjecture 1 (Kern,1993). Computing the depth
function 1s at least as hard as solving an optimization
problem.

Conjecture 2 (Kern,1993). Computing the depth
function 1s at most as hard as solving the
optimization problem.

Proots?



Neutrality

Let I' be a graph with vertex set J and edge-set E.
The number of neutral neighbors of x&V 1s

v = (/). /()
which can be studied as a landscape on I'. Trivial
neutrality can be obtained by embedding a
combinatorial optimization problem in a state space

that 1s too large, e.g. Graph Matching Problem 1n
(S, T).



Neutrality in ARL’s

Let ¥, Y,y e N(x)
® c M of non - zero constantse R

ce.(n=[lie ®v;(x) #v,(»)]
we (v ) =€ @ v, 2 v, (0 AV, (0 2 v, (0]

o)
E=FE— ——Zv
Pl

= 1s the expected variance of the family v, across
given landscape.



Neutrality in ARL’s

Theorem 4.6 (Reidys & Stadler, to appear). Let F' be
an ARL with coefficients c,, satisfying

if £=0

otherwise

u(c, =§>=J‘f)"



Neutrality in ARL’s

Theorem 4.6 (Cont.) then

Ep.]= wp®

YEN (x)

_ cx (V)+ex (), wx (V07
V()= et et )

Yoy

ol 11
E=— 2 V(v,)- ZCOV(V v,) t— [ ]2—[
y \V\ V

q

Elv, ]



Neutrality in p-Spin model

Corollary 4.7 (Reidys & Stadler, to appear). For a p-spin
model with coefficients ¢, satistying (4.6):

[n—l\
p-1

0 5 n—1 B _ n—1 ] n—1 B n—1)
Vv]=n(n-1)u (”‘J ,uo(”‘ﬂ —1 +n,u[”‘J + l—ygp‘l —|

0 0

E:V]:n,u

p— — -
o —
— T

For short range spin glasses:

U, =1- % , for z > 0 determined by connectivity.
Giving .
limElyn]=e limV]|vn]=0

n—oo n—oo



Neutrality and Ruggedness

The neutrality of p-spin can be tuned to any desired
value with parameter u,. On the other hand, p can be

used to prescribe any desired degree of ruggedness
(A=2p).

Ruggedness and neutrality are independent features
of (random) landscape.



Some Impressions

* The correlation theory hinges on the Correlation
Length Conjecture. One should take a serious look
at that.

 (Characterization of the distribution of the local
minima seems an interesting new direction.

* Neutrality has specific applications but it’s
relevance to combinatorial optimization 1s not
obvious.
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