T-79.298 Postgraduate Course in Digital Systems Science

Model Checking Algorithms and Reactive Systems
Satu Virtanen, satu@cs.hut.fi

12 November 2001

e initial satisfiability : whether (U,Z,wo) | ¢
e universal satisfiability: whether (U,Z) = ¢, i.e.
Ywg € U : (U, Z,wp) = ¢
e global model checking algorithms iterate on the structure of ¢

and traverse the entire M per each step

e [ocal model checking algorithms extend the portion of M to be
examined per each round in an iterative manner, examining the

entire ¢ per each step

Branching time logics

ML :=P|L|(ML — ML) | (R)ML
The validity of a multimodal formula ¢ is evaluated according to the
following rule set.
() M [ p iff wo € Z(p)
(i) ME L
(i) M = (¢ = 9) iff My implies M ¢
)

(iv) M = (R)¢ iff there exists a wy € U such that (wp, w1) € Z(R)
and AQ«“HQSHV _H 14

The set of states satistyfing ¢ is denoted with o7 and calculated

recursively:

(i) for an atomic proposition p, p* = Z(p)

(i) L
i)
v)

(6 —=9)” = U\ uyp”
(R)y)” £ {w e U]’ € 97, (w,w') € I(R)}

(i
(i

Computational complexity: O(|M| x |¢|)




Verifying a modal logic formula ¢ = (9 — (R)p)

{4} {r} {q}

CTL :=P|L|(CTL — CTL) [E(CTL U+CTL) |
A(CTL U*CTL)

A(pUTY)

wo = (¢ UT) iff Jw; € U such that wg < wy and w; |= 1, also
Ywy € U such that wy < we < wl, applies that we = ¢.

E(2 UT¢) ¢ EX(¢1 V (Y2 AE( UT¢1)))
A2 UTehy) < AX (Y1 V (2 A A(p2 UT4hy)))

procedure CTLcheck (model M = (U,Z,wy), formula ¢) {

if wo € eval(yp)
print “¢p is satisfied at wo of the frame F = (U,I)”
else

print “g s not satisfied at wo of the frame”

function succ (state w) : set of states
return {w’ | (w,w’) € (<)} // RETURNS STATES REACHABLE BY “<”

Computational complexity: O(|p|-|U[?)




function eval (formula ¢) : set of states
case ¢ of
p: return Z(p)
1: return 0
(1 — 92): return ((U \ eval(y)1)) Ueval(s))
E(Y2U%n): Er = eval(yn), Es == eval(ys), E =0
repeat until stabilization // UNTIL E DOES NOT GROW
E = EU{w|(succ(w)N(E1U(E2NE))) #0}
return £
At C.fﬂuv“ E, := eval(y1), B := eval(ys), E:=10
repeat until stabilization // UNTIL E DOES NOT GROW
E:=EU{w|0 # succ(w) C(E1U(E2NE))}
return E

Inverse reachability problem

Computational complexity: O(|E|).

function inverseReachability(set of points T') : set of points

<set> S := () // THE RESULTING SET OF NODES IS INITIALLY EMPTY
<set>71" =1T // A WORKING SET FOR THE ALGORITHM
while T' # () do
T" := predecessors(1”) \ S
S:=85uT
return S;

function predecessors(point w) : set of points

return {v’ | (w',w) € Z(<)}

(i)
(i)

(iv)

(vi)

A procedure for marking where EG'¢ holds
exclude all states in which ¢ does not hold
mark the remaining set with V, C U

mark all states w € U from which a state w’ € V,, without any
successors at all that can be reached traversing only through
states of V,,

find the maximal strongly connected components (SCCs) of V,,
mark all states that are members of SCCs

mark all states from which a non-trivial SCC of V,, can be
reached by a path in V,




»F ={b,c,d,e, h,i,j,1,m} for » = EGTy for the M below:

Validity for linear time logics

e the set of mazximal sequences generated from
M = (U,Z,wy) starting at the wy satisfies ¢

e whether -y is valid for even one sequence
A simplified modal logic:
ML ::=P|L|(ML — ML) | (RYML

For given M and ¢: can a maximal sequence be generated from M
starting at wy such that —¢ is satisfied at wg?

A set m of subformulas of ¢ is said to be mazimal if for ¢ € SF(p):
for each element, either the element or its negation is included in the
set m, i.e. {9 |9 € m}U {9 |9y ¢ m}. Such a set is denoted as

m € SF(p)

A set m C SF(yp) is said to be propositionally consistent if both of
the requirements below hold:

(i) L¢m
(ii) if (1 — ¥2) € SF(p), then the it must hold that (1 — 12) € m
iff 1 ¢ wor o €m

Finding propositionally consistent sets

p=(q—(R)(p—q) SF(p)={q,(R)(p —a),(p ~ )P, ¢}




Maximal propositionally consistent sets

m € { {p,qr (p—q), (@1}
{p,a, T, (p—a)}
{p, 7@, r, (a— 1)}
{p, ~q, 1, (q = 1)}
{par (P—a) (@)}
{-p,q, T, (p—=q)}
{-p.—q, 1, (p—q), (a— 1)},
{-p, 7q, r,(p—q) (a—1)} }

Shorthand: (q — 1) £ ¢

Constructing a forest of admissible atoms
atom: any pair (w, m), where w € U and m C SF(p)

admissible atom: w and m agree on the interpretation of
propositions

initial atom: (wg, mg) where ¢ € mg

open leaf a = (w, m) with no children, is called open that has no
formulas in m that begins with (R) in m

closed leaf: other atoms in the forest

accepting path: a path in the forest that is either infinite or ends
in an open leaf (a counterexample to ¢)

Xg((w,m), (w',m')) holds between admissible atoms iff

{a} {p}

()

Admissible atoms for ¢ = (q — (R) (p — q)) and above M:

« w | me SF(yp)

a1 || s1 | {p, 7, (R) (p — q), ¢}

az || 51| {p, a, ¢}

az || s2 [ {7p,q, (R)(p—q), (p—q), ¥}
ag || s2 | {-p,q, (P~}

oy and ao are initial atoms, X contains (a1, as) and (as, ay).




LTL

Formulas in positive conjunctive normal form:

F*pi A ... AF*p, A G*(p1 —» XG*—p1) A...G*(pp — XG*—p,)

Definition of M = (U,Z, wy):
e the set of states U = V U {s, t}, where s,t ¢ V
e wy =3
* Z(R) = EU{(s,vi) | vi € V}U{(vi,1) [vs € VI U{(t, 1)}
e Z(p) for all atomic propositions p € P is such that
—v, €I(p) iff 1 <i < |V
—v; ¢ L(p;) iff 1 <4, j < |V, i
- V1<i<|V]:s¢Z(pi)
—V1i<i<|V[:t¢I(ps)

The closure of a formula ¢, CL(yp), is defined as the minimal set of
formulas containing ¢ for which

(i) ~ € CL(y) if and only if ¢ € CL(y)
(ii) if ¥1 V 102 € CL(), then both 11,5 € CL()

(iii) if X € CL(), then 9 € CL(y)

(iv) if =Xv) € CL(¢), then X—p € CL(p)

(v) if (Y2 U™p1) € CL(p), then all 91,92, X (2 U™th1) € CL(p)

Atoms a = (w, ¢) where w € U and c¢ as defined below:
e VpeP: pé€Egif and only if w; € Z(p)
Vi € CL(p) : ¢ € ¢; if and only if ) ¢ ¢;

V(1 Vb)) € CL(p) : (11 V 1h2) € ¢; if and only if either i1 € ¢;
or Yy € ¢

V=X € CL(p) : =Xt € ¢; if and only if X—) € ¢;

o V(1o U*ipy) € CL(p), (12 U*)y) € ¢; if and only if either ¢ € ¢;
or both 15 € ¢; and X (12 U*1)1) € ¢;
(a,a’) € E for o = (w,c) and o' = (v, )Q
e (a,d/) € E if and only if (w,w’) € Z(R) and

o VX € CL(p) : X¢p € cif and only if ¢ € ¢

M, wy = E ¢ iff there exists an eventuality sequence starting at an
initial atom o = (wp, ¢p).-

An eventuality sequence starts from an atom a = (w, ¢) iff there
there is a path in the atom graph G such that a self-fulfilling SCC
can be reached by it from a.




Modified Tarjan’s algorithm

procedure LTLcheck(model M, formula ¢)
<integer> recursionDepth := 0 // NUMBER OF RECURSIVE CALLS MADE
<stack> SCC :=
<hashtable> storage // FOR STORING THE TRAVERSED “PATH”
<set> initial := {a |« is an initial atom of M and ¢}
for all « € initial do dfs(a)
print “¢ is not satisfiable in M”

e exponential with respect to the number of UTformulas
e linear with respect to the size of M, O(|U|?)

e generally: with past-temporal operators is complete in
PSPACE with respect to |¢| and NLOGSPACE in size of the
model M

procedure dfs(atom «) // DEPTH FIRST SEARCH
if (storage does not contain o) // A “FRESH” ATOM
<integer> currentDepth = recursionDepth
recursionDepth++ // INCREMENT DEPTH BY ONE
// INITIAL VALUE AT CURRENT RECURSION DEPTH
storage[a] = currentDepth
push(SCC, a) // TO THE TOP OF THE STACK

<set> successorAtoms := children(c)
for all (8 € successorAtoms) do
ats(6)

// CHECK WHETHER {3 IS “ABOVE” «

storage[a] = min(storage[a], storage[8])
// IF NOTHING WAS ABOVE = « IS A ROOT OF AN SCC
if (storage[a] = currentDepth)

processRoot(a)

procedure processRoot (atom «)
<set> required := () // SET OF REQUIRED EVENTUALITIES
<set> fulfilled := () // SET OF FULFILLED EVENTUALITIES
repeat
B := pop(SCC)
storage[8] := o0 // PUT “BELOW” EVERYTHING ELSE
required := required U {¢1 | (2 Ut e1) € B}
fulfilled := fulfilled U{% | ¢ € 8}
until (¢« =) // ALL ELEMENTS IN THE SCC OF o ARE PROCESSED
if (required C fulfilled) // THE SCC OF « IS SELF-FULFILLING
print “¢ is satisfiable in M”; exit

The function children returns the set of atoms accessible from the

given atom in the constructed graph.

pTL ::=P|Q|L|(uTL — uTL) | (R)uTL|vQ uTL

e the quantifier v is a restricted existential quantifier on sets of

points
e the quantifier y is defined by v as ugp = —wvg—(p {q := ~q})

o Knaster-Tarski:

U,Z,w) Frgowe| J{QIQ C ¢ {q:=Q}}
(U,Z,w) Epg o w e {Ql¢"{a:=Q} C Q}




If ¢ is union-continuous, the fixed points vq ¢ and uq @ can be
obtained with the following limits:

vqe = lim S&A.J

1—00

pgp = lim ¢'(L).
11— 00
For a finite universe U, every monotonic function is also

union-continuous:

I H A
vqp = @_Mw_ﬁ (T)

= i gas
Bq mﬁfﬁv

function eval (formula ¢) : set of states
case p of
p: return Z(p) // ATOMIC PROPOSITION
¢: return v(q) // VALUATION OF A PROPOSITION VARIABLE
1: return 0
(11 — 92): return (U \ eval(y1)) Ueval(ys))
(R)y: return R '(eval(y))
vqyp : Hi:=U
repeat until stabilization // UNTIL H; DOES NOT SHRINK
Hy := eval(y{q := H1})
return H;
pqy : Hz:= ()
repeat until stabilization // UNTIL Ha DOES NOT GROW
Hy := eval(y{q := H2})
return H>

e the cycles stabilize after at most |U| rounds: O (|¢| - |U]94(#))
e qd(yp) is the nesting depth of fixed-point operators in ¢

e the computation of an inner fixed-point formula needs to be
restarted for each iteration on the enclosing formula
Example: ¢(q1,q2) = pq1(p1 A pg2(Xq1 V Xg2 V p2)).

For each iteration of ¢1, the inner formula pg2(Xq1 V Xqa V p2) is
re-evaluated.

Local model checking for yTL

¢ a tableau method, which explores a portion of the model using
depth-first search

e the nodes of the tableau are sequences of the form A, w = 1,
where w € U and ¥ is a sub-formula of ¢

e A is a list of definitions that contains a sequence of declarations
(1 =1,-..,qn = 1,) where each proposition variable g;
appears only once and each ); may only contain variables g; such
that j <1




Steps for decomposition of the formula ¢ into a tableau:

(i) anode A,w = (1 A 12) has two children: A, w |= 1 and
Aw _” V2

(ii) a node A,w = (¥1 V 12) has one child: either A, w =1 or
Du w _H @M

) anode A,w = (R)Y has one child: A, w’ =1

) anode A,w = [R]y has n children: A jw; E,...,Aw, =9
(v) anode A,w |= pg has one child: A’ w =1

) anode A,w |= vq1 has one child: A", w |1

) a node A,w = g has one child: A,w =1

Restrictions for the construction:

V, A, (R), [R], p and v are used as basic operations, negations are
assumed to appear only in literals.

Each p or v quantification in the formula ¢ is expected to bind a
different propositional variable.

e rule (iii) can only be applied when w’ € R(w)
e when applying rule (iv), it must hold that R(w) = {w1,...,w,}
e for rules (v) and (vi), A" = AU{¢ =1}

e rule (vii) is only applicable when (¢ =) € A and no ancestor
node is of the form A’ w |= 9 with the same w and 1

When no rule cannot be applied for any leaf, the tableau is said to be

mazimal.

A leaf A,w | ¢ of a maximal tableau is said to be successful if the
following holds:

(1) @=pePAweIlp)V(y=-pAw¢I(p))

(2) v=qeQq¢Awen(qg),or=-qq¢ A wgv(g),0
(3) rule (iv) produces no children, that is: 1 = [R]¢/ A R(w) = 0
(4) ¢ = q € Q and ¢ was included in A by rule (vi)

Theorem: w € @7 iff there exists a successful tableau with root

0w

Message passing

e processes send each other messages, where the messages and the
order of sending them are specified by some protocol

e cach process may send or receive a message.

e messages may be directed to specific channels with specified
recipients or broadcasted to any process within the messaging
space

In synchronized communication, the send and receive primitives are
blocking operations, i.e. the sending process must wait for the
recipient to react before proceeding further.




Synchronous communication: a process may not proceed until all the
communication partners defined for the particular task have
expressed willingness to participate in that action.

Asynchronous communication: the processes deciding themselves
whether they wish to wait, usually by using some sort of buffer for
messages that are not immediately reacted to

When non-determinism is required for the inter-process
communication, guards that consists of a Boolean expression and
communication statements may be placed on the messaging

operations.

Communication by shared variables

When two or more processes interact by reading from and writing to
a shared memory space, the may exchange information by using
shared variables for separate issues on which to communicate. The
semantic of possible values for each of the variables must be defined,
similarly to defining a grammar or a protocol for the message passing

paradigm.

It must be ensured that the accesses to the shared variables are legal:
two processes should not be able to modify the value of a variable at
the same time, and no process should read a value after some other

process has reserved it for modification.

When the system modules are said to be synchronized, for each of the
discrete time steps, each of the modules performs a task. The tasks
are generally independent on each other, but it can also be stated
that only when certain conditions apply, certain transitions may be
taken by the processes.

One process may have to stay in an ¢dle loop, performing essentially a
no-op (stands for no-operation) until the conditions for taking the
next actual step are reached.

In asynchronous computation, for each time step, some but not
necessarily all modules advance. If performing a no-op is possible for
every process in every state of the computation, then the
synchronous and asynchronous computation modes coincide. The idle

step is also called a “stutter”.

Transition system (X, S, A, Sp)
e an alphabet 2.
e a non-empty and finite set of states S
e a subset Sy C S as initial states

e a transition relation A C S x ¥ x S describes which states in S
are reachable in one step from one another for the symbols of the
alphabet X




Parallel transition system 7' = (11,...,T})

n-tuple of transition systems in which Vi, j such that ¢ < j, applies
that S; NS; =0.

e the global alphabet is the union of all alphabets, ¥ = [JI_, ¥;
e the global state space is defined as S = 51 x ... x S,
e the set of global initial states is defined as Sy = S19 X ... X Sno

e for the global transition relation, a transition
d=((s1,---,8n),a,(s],...,s),)) € Aiff VT;
(i) if a € 3, then (s1,a,s]) € A;, and
(ii) if a ¢ X;, then s; = s,

Elementary Petri net N = (P, T, F, my)

e a finite set P of places

o a set of transitions T such that PNT =0

a flow relation F' that describes the relations of the places and
the transitions: F C (P xT) U (T x P)

an nitial marking mo C P imposed on the net

e any subset of P is a marking of the Petri net

A marking function £ is a function from the set of places P to the set
of P’s subsets 2%

e preset: ot = {p|(p,t) € F}

e postset : te = {p|(t,p) € F}.
A transition is enabled at a markingm C P if o Cm A teNm C et

A marking m/ is said to be the result of firing a transition t from
some marking m, if the transition ¢ is enabled at m and the marking
m/ consists of the states m' = (m \ ot) U te.

Shared variable program (V, D, T, sg)
e a set of program variables V = {vy,...,vn}

e a state space D = Dy X ... x D, in which each
D; ={di1,-..,dim,} is a finite domain of the corresponding

variable v;

e a transition relation T is defined as T'C D x D

one initial state so = (d11,...,dn1)

A transition (s, s’) is in T iff the proposition o7 is a logical
implication of the valuation Z, i.e. Z | o1, where s = (dy,...,d,),
s'=(dy,...,d,), Z(v;) = d;, and Z(v}) = d},




EOO

Hva | | | | | |
B A
R () . .
se¢ R R R R
n 2 1
e S = |4 S

The puzzle as a shared variables program: a variable for each tile s

i=1,...,(h-v—1) (a two-component vector t; = (v, v;,)) and one Mmﬁm _.Mﬂ _.MN ZN

(2]

variable for the direction of the next move, transitions are swappings

of a tile with the empty slot.

bus

Q’ description

Q  maintain The correctness requirements with n representing the width of

set the data bus are

0 reset n
AG*(mc Apc — \/ (bus[i] > A((oc - AX(bus[i] Uic)))
- undefined i1

_= O = O W
= = O O | ™
—

AG*(-mc Asc — \/(Qli] > A(Q[i — 1] UTic))),
The undefined state can be modeled by making a non-deterministic =2

choice between 0 and 1 for the value of the next state Q’ internally. ic is the result of the bit-wise operation ic = ((—mc Apc) V (mc A sc)).
The output here changes only when the clock line changes from high

to low.




MODULE main
VAR Q, bus: array 1 .. n of boolean; A bounded buffer used by a set of communicating processes within
inp, mc, pc, sc, oc: boolean; —— INPUT LINES . .
the operating system of a Siemens cellular phone
DEFINE out := Q[1]; ic := ((!mc & pc) | (mc & sc));
—— FOR ALL OF THE m BITS INDEXED WITH 0,...,n — 1: e should be deadlock-free: AG*EF*init
wmm M H”M,mmo%n_@wﬁm“umv_”w“mﬁwu_”ou”unﬂw_ﬁwww@ QtLl; e five processes and the operating system kernel process
ASSIGN next(Q[0]) := case ic: case e size of the state space per process is app. 10-20 states
1S[0] & !'R[0]: QL[O]; —— MAINTAIN
S[0] & !'R[0]: 1; —— SET e there are app. 50 types of messages
1S[0] & R[0]: 0; —— RESET e processes scheduled by the operating system based on priorities
S[0] & R[0]: {0, 1}; esac; —— UNDEFINED . .
next (bus[i]) := case oc: Q[0]; loc: {0, 1}; esac; e storage and delivery of the messages is also done by the OS
FAIRNESS ic FAIRNESS oc

input buffer output | input buffer output
nil () nil () nil
x () nil nil () x
nil (1,00, 2y) nil (X1, Ty—1) Ty
T (1,0, 2y) nil nil ()21, .., Ty 1) Ty
nil 0 y 0
s 0 y | mi (2)
x (T1y. vy Ty) Y nil (T, 21, ..., Ty)
x (1,00, Ty) y x (T1,.-,Tn)




