T-79.298 Postgraduate Course in Digital Systems Science

Model Checking Using SAT Solvers

Satu Virtanen, satu@cs.hut.fi

3 December 2001

Bjesse, Chapter 7

e searching for bugs in a memory subsystem of Alpha, i.e.
searching for counterexamples to desired properties of hardware

e model checking methods that use SAT solvers instead of BDDs

e two methods:
(i) bounded model checking

(ii) symbolic trajectory evaluation

e experiments comparing the runtime of different approaches

Research on using symbolic model checking to find bugs in a
next-generation Alpha processor, focusing at register transfer level
bugs.

Using Cadence SMV, runtimes required for checking simple
properties were too high = instead of resorting to BDD-based
model checkers such as SMV, experiments using SAT solvers.

Circuits on synchronous gate level viewed as finite transition systems
e states are assignments to the state variables (a vector s)

e transition system described by propositional formulas:
(i) Init(s) that evaluates to true for all initial states
(ii) Trans(s,s’) that evaluates to true for proper state transitions

e three inputs: the above formulas together with a description of
the property to check Prop(s)

e the aim is to construct a counterezample to the specified property
instead of attempting to show that one does not exist




Bounded model checking (BMC)

previously applied to industrial verification (Power PC)
a method for applying SAT solvers in model checking
not used for finding as “deep” bugs before

sufficient capacity for realistic industrial application when
combined with efficient SAT solvers

tries to find bugs by attempting to construct a formula that is
satisfiable exactly when a counterexample of a given length N or
shorter exists: Init(s1) A Trans(si,s2) A... A Trans(sy—1,5n) A
(=Prop(s1) V...V = Prop(sn))

the resulting formula is evaluated by some external SAT solver

obviously incapable of proving the absence of bugs

Symbolic trajectory evaluation (STE)
mixes abstract interpretation and symbolic evaluation
not previously combined with SAT solvers, always with BDDs

now applied to verification at the synchronous gate level, which is a
high level of abstraction for STE

takes as input Trans(s,s’) and a two lists that form a trajectory
assertion Ant = Cons, for which a boolean expression ok is computed
that evaluates to true whenever the assignments for the states fulfill

the assertion (ok then given to an external SAT solver)
the equal-sized lists contain information of the system state on step

ok may contain values { True, False, X, T} as not everything is properly

specifiable (X £ unknown, T £ over-specified)

delayed or as an example: [s.a=x As.b=y, ()] = [{-), s.o=xzVy]

Merge buffer

subbox of the MBox (for execution of memory reference

instructions)

receives requests to write into memory and merges stores to the

same physical address

must communicate with four other subboxes to achieve correct

merging

a large and complex buffer

starting from the original RTL description
reducing the size of the model by symmetry reductions

problems of the reduced model should remain problems in the
original model

restricting the input by adding transactor state machines

abstracting the circuit:
e optimization by an RTL compiler

e removal of redundant or transparent latches

property specification and abstraction

. verification and inspection of the counterexample




Symbolic model checking with BDDs

o evaluation of several BDD-based tools, SMV being the only

promising one
e SMV ported to 64-bit Alpha with 8 GB main memory
e the merge buffer is too large to handle: some inputs were fixed
e verification takes several hours

e many bugs were found

Bounded Model Checking

SAT-based model checking workbench FixIT

Prover not available for Alpha = experiments on a 32-bit PC
time required for the verification magnitudes less than with SMV
CAPTAIN PROVE searches for models using strategies

a simple strategy: timed strategy consisting of 1-saturation
followed by backtracking

SAT-based symbolic trajectory evaluation

e a version SAT-based of STE implemented in FixIT

e difference to BMC: possible to give concrete values to some state
variables and leave some as X = potentially deeper exploration
of the state-space quickly

e writing specifications is slow: what values to assign, propagation
of X's = iteration required

S B

Methodology proposal

. begin analyzing a new subbox with BMC

use a small bound to make the inspection quick

eliminate false counterexamples by modifying the transactors
check longer and longer runs with the timed strategy

abstract the failure trace to check for other similar failures
after a bug has been found and fixed, ensure removal by STE
when BMC starts to take too long (> % h), use STE in parallel

when nothing is found anymore, try SMV or move on




