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Introduction
problem is to verify properties M = ¢
to ease the problem reduce the size of the model in a methodical way

reductions that preserve certain classes of properties are identified

in linear time (LTL) case it is possible to transfer logic formulas to automatons

and vice versa

in both linear and branching time cases it is possible to choose minimization

relations so that expressable properties are preserved
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Models, automata and transition systems (1/3)

a structural level connection between w-automata and LTL formulas -
construct an automata from a Kripke model

Kripke model M = (U, Z,wq) with predicates from P and accessibility relations
from R
alphabet ¥ = 27 x R, an w-word o = 0g07 ..., where o; = (a;, R;)
o is generated from M if there is a mapping p from indices of ¢ to points of U
p(0) = wq, (initial states match)
if p(¢) = w, then a; = L(w), (predicates match)
if p(i) = w and p(i + 1) = w’ then (w,w’) € Z(R;), (transition relations
match)
if o is finite with last letter o,, and p(n) = w, then w is terminal (generated
words represent maximal paths in the model)

e the language generated by M is the set of w-words generated by M

e Kripke-models can be expressed as weakly fair (all states recurring, terminals
accepting) transition systems with alphabet X
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Models, automata and transition relations (2/3)

models can be seen as automata (by lemma 4.1), also for every LTL formula
there exists a Biichi-automaton

¢ is an LTL formula and M (with single accessibility relation)

transform M to weakly fair transition system M 4 and ¢ to Biichi-automaton

My
@ is sequence valid in M iff the language generated by M 4 is subset of the
language accepted by M,,:

Mg it L(M4) € L(My)

or LMa)NL(M,) ={}or L(M4) x LM,) =1}

model checking problem is turned to nonemptiness check of the
Biichi-automaton
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Models, automata and transition relations (3/3)

e the product automaton M 4 x M, must accept an infinite word o iff both
component automatons do - the inifinite run must visit the recurring states of

both components infinite often

usually ¢ is transformed to M-, and model checking consists of checking that
LMy x M_,,) is empty

since both M and ¢ can be represented as an automaton, ¢ can be regarded as
an abstract version of the “implementation” M, thus M; = Mg if
L(M;) € L(Msg)

Theorem 4.2
M, My are Biichi-automatons:

— My = My iff for all properties ¢, if My = ¢ then M; = ¢
— My = M, iff for all w-regular ¢, if My = ¢ then My E ¢

e to prove M = ¢, create a smaller My: M7 = Mz and check Ms = ¢
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Safety and Liveness Properties (1/4)

e for natural models M!% is the model consisting of first ¢ points of M, M o M’
is the concatenation of both models (M if M is infinite)

e  is a safety property, iff for all natural models M,
M= if VidM' s Mo M =
if the safety property is broken, there must be a finite prefix that can not be
completed to an accepting computation
e (o is a liveness property, iff for all natural models M,
ViaM' : Mblo M = ¢
Theorem 4.3 (Properties of safety and liveness properties)
e safety props are closed under finite unions and arbitrary intersections
e liveness props are closed under finite unions but not under intersections
e T is the only prop that is both safety and liveness

e for any property ¢ thre exists a safety property ¢gs and a liveness property ¢y,
s.b. o= (psNerL)
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Safety Properties (2/4)

e a syntactical definition of an LTL safety property:

Theorem 4.4
Every temporal formula built from literals with 1, T, A,V, W defines a safety

property.

an alternative characterization would be via past temporal formulas: G*v
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Safety Properties; characterization by automatons (3/4)

e a binary relation A C U x U is image finite if for any x € U the set

{y € U(x,y) € A} is finite — “every state has finite number of successors”

e transition system S, A, Sy is finitary if Sy is finite and A is image finite — “only

finite nondeterminism allowed”

Theorem 4.5
Any finitary transition system defines a safety property.

the finitary requirement prevents the following example that defines (F*X 1)
(all finite strings)

Theorem 4.6
For every w-regular safety property there is a finite transition system defining
this property.

there exists a tableau procedure (section 7) for obtaining a daterministic
transition system for LTL safety properties
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Safety Properties (in practice) (4/4)

e to check that a model sequence-validates an w-regular safety property can be
checked by the language containment problem M = ¢ ifft L(M 4) C L(M,,)

e this can be checked by executing M 4) and M, concurrently in lock-step (can
be used in specification-based testing)

e for finitary transition systems it is sufficient to check whether Ms = ¢ implies
M = @ for all safety properties ¢ to establish M; = Maj:

Theorem 4.7

M1, My are finitary transition systems. M; = My iff for all safety properties
w, if Mo _H © then My _H Q.

(variation of 4.2 that was for all w-regular properties)

10
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Simulation relations (1/6)

weaker preorders than the language inclusion are useful
— language containment for large nondeterministic systems is hard

— it may be useful to formulate properties regarding the structure of the
system

My is a submodel of a model My (M1 E My) if
— Uy C Uy

- T1 =12 Uy

— Wy = wo

“part of a bigger graph”

generated submodel is the model consisting of all reachable states; preserves all

temporal properties

in general it is usually better idea to combine states rather than delete them

11
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Simulation relations (2/6)

for models M; and Mo, a relation H C Uy x Uy is a simulation (M1 = M) if
— (wy,we) € H
—VpeP,uecU,veUsif (u,v) € H then u € Z;(p) iff v € Zy(p)
— Yu,v : (u,v) € H and for all R,u' s.t. (u,u') € Zy(R) there is a v’ s.t.

(v,v") € To(R) and (v/,v") € H
To have a simulation M; = My (My simulates M7), M2 must be able to do
the same transition as My — one state of Mo can simulate several M states
M is an abstraction of M, less states but more behaviours

simulation is a preorder on class of all models (4.8)

other properties:
— it My C My then M; = M,y
— if M; = My then My _H Mo

— for deterministic models M; E My iff M; = My (a model is deterministic
if for every w € U and R € R there exists at most one w’ € U s.t.
(w,w') € Z(R))

12
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Simulation relations: preserved properties (3/6)

e if there is a simulation relation between the models, then the models have a
simulation relation (4.9)

e a modal box formula is a formula without the diamond operator (“eventually”)
— literals and T, L
— if ¢, 9 are modal box formulas, then (¢ A ), (¢ V 9), |R]e are modal box

formulas

Theorem 4.8
Let M1, M5 be Kripke-models. M; = My implies that for all modal box
formulas ¢, if My = ¢ then My = ¢.

like 4.2 and 4.6, this allows checking the modal box formula of a smaller model

13
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Simulation relations: preserved properties (4/6)

e simulation can maintain more expressive logics

e a ACTL formula is a CTL formula without the E quantifier
— literals and T, L

— if ¢, 9 are ACTL formulas, then (¢ A ), (@ V1), A(eU ), A(@WT)
are ACTL formulas

e ACTL formulas describe properties that are valid in all paths of the model,
singling out properties of one path is not possible

Theorem 4.9
Let M1, M5 be Kripke-models. M = M implies that for all ACTL
formulas ¢, if My = ¢ then My = ¢.

e converse does not hold for non-finitary system (see counterexample for modally
indistinguishable models)

14
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Simulation relations: preserved properties (5/6)

e the example can not be distinguished by any modal formula:

Theorem 4.10
For any ¢ € ML it holds that M; = ¢ iff M3 = .

although by above for all modal box formulas if My |= ¢ then M = ¢, there

is no simulation relation between M1, My (as opposed to 4.8)

image finite cases the converse of 4.8 holds

Theorem 4.11
Let M1, M5 be image finite Kripke-models. M1 = M iff for all modal box
formulas ¢, if My = ¢ then My = ¢.

15
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Simulation relations: algorithm (6/6)

e for deterministic finite automata there are efficient algorithms for language

inclusion
e an algorithm for creating a simulation relation H = U; X Uz between two
nondeterministic models:

1. place all pairs of states with matching properties into the first iteration of
the relation HY

2. for the next iteration, place a pair of H™ to H™T! if the model to be
simulated has a transition that the simulating model can match — this
simulated transition should end to some other pair in H"”

e since this is a finite model, eventually H" = H"*1

e intersection of all H™ is the largest simulation relation

16
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Bisimulations (1/14)
equivalence is a symmetric preorder

a preorder < can induce an equivalence ~: M ~ M, iff M; < M5 and

My <X My

submodel ordering C induces isomorphism, sequence validness = induces

equivalence of the generated languages

bisimulation < is an equivalence relation between universes of two
Kripke-models M1, Ms:

\EHAHV\EM

if w 2 v then u € Zy(p) iff v € Zy(p)
= v and (u,u’) € Z;(R) then there exists v’ s.t. (v,v') € Zo(R) and

/

if u
u' =2
if w 2 v and (v,v’") € Zo(R) then there exists v’ s.t. (u,u’) € Z;(R) and

/

/
u =

17
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Bisimulations (2/14)

Some properties of bisimilar models

— each model is bisimilar to one where duplicate states with same inputs and

outputs are removed
— a model is bisimilar to its reachable part
— a model is bisimilar to its unfolding

if M1 2 My then M1 = My and My = My, but not necessarily the other

way around

models M1, My are equivalent w.r.t. to logic L (M =1, My) if for all well
formed formulas of L it holds that My E ¢ iff My = ¢

the relation =gor, is the elementary equivalence

18
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Bisimulations: preserved properties (3/14)

e Bisimulation relations are precisely those equivalences that preserve all modal
formulas (compare to modal box preservation of simulations (4.10)) — modal
formulas are bisimulation invariant:

Theorem 5.2

Bisimilar models are modally equivalent: if M; &2 My then M; =nmp M.

converse requires image finiteness:

Theorem 5.3
Image finite models are modally equivalent iff they are bisimilar: if My, M
are image finite, then M; &2 M, ifft M, =pm1 Mo,

19
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Bisimulations: preserved properties (4/14)

e by restricting the model to finite Kripke-models, it is possible have similar

resuls for more expressive logics:

Theorem 5.4
Let M £ (U,Z,w) be a finite model (|U| = n), and let ¢ be a monotonic
pTL-formula. Then M =vq ¢ ift M |=1v"q .

since modal logic is a sublanguage of uTL:

Theorem 5.5
Finite models are monotonic pTL-equivalent iff they are bisimilar: if My, M
are finite, then M; & My iff My =11, Ma.

20
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Bisimulations: distinguishing power (5/14)

e it is possible to user weaker logics to distinguish between models:

Theorem 5.6
Finite models are monotonic pTL-equivalent iff they are bisimilar: if M, My
are finite, then M 2 My iff M1 =pmr, Mo.

if two finite models can be distinguished by a formula of logic CTL* then they
can be distinguished by a CTL formula as well - CTL* can be transferred to
MSOL and thus pTL

logics with different expressiveness can have the same distinguishing
capabilitites

21
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Bisimulations: expressiveness and distinguishing power (6/14)

e logic L2 is at least as expressive as L1 iff for any formula ¢, € L1 there exists
a formula @2 € L2 s.t. for all models M: M = ¢ iff M = 9

L1, L2 have the same expressive power if L1 is at least as expressive as L2
and vice versa — for each formula in one logic there is an equivalent one in the

second

logic L2 is at least as distinguishing as L1 if any two models that are
inequivalent w.r.t. L1 are inequivalent w.r.t. L2 — or iff M =1, M5 implies

My =11 Mo

L1, L2 have the same distinguishing power if L1 is at least as distinguishing as
L2 and vice versa — or iff for all models it holds that M =1,9 Mo iff
My =1 Mo

22
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Bisimulations: expressiveness and distinguishing power (7/14)

e expressiveness is a finer equivalence relation than distinguishability

Theorem 5.7

If L1 is at most as expressive as L2, then it is at most as distinguishing. If L1
and L2 have the same expressive power, then they have the same
distinguishing power but not vice versa.

23
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Bisimulations: yardstick for expressiveness (8/14)

e any formula ¢ is preserved under bisimulations if for all models M; 2 My it
holds that M; = ¢ iff Ma | ¢

a logic L is bisimulation invariant if all well formed formulas of L are
preserved under bisimulations

multimodal logics are bisimulation invariant (5.2), but this holds for more
expressive logics like yTL:

Theorem 5.8
If My & Ms then for any positive 4 TL formula ¢ it holds that M = ¢y iff

.\:Tmbw

the reverse direction provides a connection between bisimulations, first order
and model expressiveness - specifies which 1st order formulas can be
transferred to ML

Theorem 5.9 (Expressive completeness of ML)
For any 1st order formula ¢ (with 1 free variable) which is preserved under
bisimulations there exists an equivalent multimodal formula.

24
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Bisimulations: yardstick for expressiveness (9/14)

e the same result can be extended to 2nd order formulas and pTL

Theorem 5.10 (Expressive completeness of yTL)
Let ¢ be any MSOL property. Then ¢ is preserved under bisimulations iff ¢ is
definable by positive yTL formula.

e every logic which is bisimulation invariant and has a semantical translation to
MSOL can be translated to pTL

25
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Bisimulations: Ehrenfeucht-Fraisse games (10/14)

a convinient way of imagining bisimulations (and equivalences w.r.t. other

logics)

two players: Ann and Bob, each having an unlimited number of identified

pieces: ag,a1,... and bg, by, .

game is played on two Kripke-structures, both place their first pieces on
different models — labels must match or Bob loses

Ann places her (¢ + 1)th piece on either of the boards honouring the transition
relation w.r.t placed pieces

Bob has to match Anns move on the other board by locating the ith piece on
that board and placing the piece honouring the transition relation

if Bob can not match Anns move he loses, if he can play the game forever he

wWIins

26
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Bisimulations: Ehrenfeucht-Fraisse games (103 /14)

e Ann can force a win within n rounds if she can place her piece s.t. Bob loses

immediately or after n — 1 rounds

Ann has a winning strategy if there is n s.t. she can force a win — Bob has a
winning strategy if Ann does not

Theorem 5.11
Ann has a winning strategy iff the two models are not bisimilar; Bob has a
winning startegy iff they are bisimilar.

allowing sets of pieces Ann has a winnign strategy iff the boards can be
distinguished by MSOL formula

27
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Bisimulations: auto-bisimulations (11/14)

e to minimize a Kripke model w.r.t. bisimulations

e note that all definitions have not forbidden bisimulations to points in the same
model: auto-bisimulations

Theorem 5.12
The union of any number of auto-bisimulations on a model is again an

auto-bisimulations.

Thus the greatest auto-bisimulation is the union of all auto-bisimulations in
the model.

for each auto-bisimulation there exists greatest equivalence relation = that
includes the auto-bisimulation (2C=) and is also an auto-bisimulation

28
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Bisimulations: auto-bisimulations (12/14)

e for any model M = (U, T, wg) and equivalence relation = on U quotient of M
w.r.t = is the model M= £ (U=,7=, w5 ) s.t.
— U= is the set of equivalence classes of U w.r.t. =
— wg is the equivalence class of wy
— I=:
x w= € I=(p) if there is w € w= s.t. w € Z(p)
* (wT,wy) € I=(R) if there are wy € wi and wy € wy s.t. (wy,ws) € Z(R)

Theorem 5.13
If the equivalence relation = is an auto-bisimulation, then M = M=.

e the quotient of the model w.r.t. its largest autobisimulation is the minimal

representation of the model

29
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Bisimulations: partitions (13/14)

for any set of points P C U
<R>P=A{w|Fw' € P,(w,w') € Z(R)}
those nodes that have a transition to P.

given a partition U to equivalence classes, a component w= is uniform if
Vpe P:w=CZ(p) VvV w=NZI(p) ={}
the nodes in partition have the same labeling (propositions).

a component w= is stable w.r.t set P if
VR:w=C<R>P V wN<R>P=1{}
it is possible to access P from partition

a partition is stable if all components are uniform and stable w.r.t other
partitions

Theorem 5.14
The coarsest stable partition is the largest auto-bisimulation.

29. October 2001
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Bisimulations: algorithm (14/14)

e To construct the coarsest stable partition:
— start with a trivial partition of one component

— repeat until no new partitions are created and choose nondeterministically

* 1. choose a component wy and a proposition p € P
2. split wg to two uniform partitions in which the other partition has
property p
choose components wg,wiy and R € R
split wg to be stable w.r.t. wT to those that have a transition to wi
and to those that have not

e Paige-Tarjan computes the same in O(m - logn), where n is number of points
in model and m is the number of partitions in the result
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