“Model transformations and properties” and
“Equivalence reductions”

Vesa Luukkala, vesa.luukkala@nokia.com

November 22, 2001

Abstract

This is an essay based on Clarke’s and Sclingloff’s monograph on
Model checking, chapters 4 and 5 (pp. 1670-1689). The chapters
deal with transforming a model to a smaller one that preserves certain
classes of properties. Furthermore properties are expressed as lan-
guages accepted by automatons that can be transformed to the same
formalism that is used for the models. The transformations are de-
scribed as preorder and equivalence relations between the original and
transformed models. On the other hand, these relations can be used
to define classes of properties that can be expressed using certain log-
ics. This enables measuring the expressive and distinguishing power
of these logics.

1 Introduction

This work is done for T-79.298 “Digitaalisten jarjestelmien lisensiaattikurssi”
autumn 2001 course at Helsinki University of Technology.

The motivation of these chapters is twofold. On one hand it is speeding
up the model checking process, that is the process of determining whether a
model M satisfies some property ¢ (M = ¢7), by reducing the size of the
model while still preserving the relevant information needed to decide the
problem. How much reduction is possible is determined by the property as
more expressive properties require more information in the model.

Conversely, reduction relations define not only a class models that honour
the relation but also a class of properties that hold in those models. These
properties can be expressed using different logics but also as languages that
are accepted by certain automatons.

The “Model transformations and properties” part (chapter 4) considers
properties as languages that can be translated to to the same formalism as
the model. The examined relations are sequence validness and simulation
and the corresponding preserved properties range from safety properties to
modal box formulas.

The “Equivalence reductions” part (chapter 5) deals with bisimulation
and its relation to modal logic, pTL and MSOL. The expressability and
distinguishing power of logics are defined and finally, model reduction using
autobisimulation is presented.

This is written as a companion document to the original text, so number-
ing of theorems, examples and figures in this document follows the Clarke-
Schlingloff document, unless explicitely stated otherwise. To help reading
the number of the referenced item in the original text will be denoted in the
margin of this text.

2 Model transformations and properties

The previous sections showed that w-languages can be used to describe both
the set of natural models for which linear temporal logic formulas and w-
automatons that accept that language. This section shows that linear tem-
poral logic properties can be expressed using automatons and vice-versa.
Logic formulas are more declarative and global way of expressing proper-
ties when compared compared to the imperative and local automaton-based
description. This connection allows the designer to choose the more fitting
formalism.

Furthermore the above dualism allows defining a connection between var-
ious logics and various relations on models. This translates easily to practical
use: given a model the designer can transform it to a smaller one that is in
chosen relation with the original and be sure that all logical properties of
the original model that are preserved by the relation are present in the small
model.

2.1 Models, Automata and Transition Systems

This section is based on giving a more straightforward connection between
logics and automatons by noting that a Kripke model that generates a lan-
guage can be structurally (thus straightforwardly) translated to a transition
system that accepts the same language. This is stated in Lemma 4.1. Here
the definition of generation of a word from the Kripke-model requires that

4.1

finite generated words are mazimal to avoid generation of all prefixes to
generated words.

Since there is an equivalent Biichi-automaton for LTL (Linear Time
Logic) formulas, it is possible to reason about both models and linear tem-
poral logic formulas in terms of automatons. One of the two central relations
in this section — sequence validness — is defined by language inclusion:

M E ¢ iff L(My) C L(M,)

Here M is a Kripke-model, ¢ is an LTL formula, M4 is the automaton
that accepts the language generated by M (as per lemma 4.1.) and M,, is
the Biichi-automaton corresponding to ¢. Property ¢ is sequence valid in
model M iff the behaviour of the model is restricted by the behaviour of the
property.

The language inclusion problem can be transformed to language empty-
ness checking: L(M4) N L(M,) = {} or L(M4 x M_,) = {}. This is the
standard problem of LTL model checking, first a Biichi automaton is con-
structed both for the model M and the negation of the property —¢, next a
product automaton is constructed so that it accepts an infinite word only if
both of its components do. In order to ensure that accepting states of both
components are certainly always visited in the product automaton, there are
essentially two copies of the same product automaton. Once the accepting
state of the first automaton is encountered the execution is switched to the
second copy and execution is continued on that side until an accepting state
is encountered signaling that the execution can again continue on the orig-
inal copy. The additional labels 0,1 and 2 that are tagged to the states in
the product definition in Clarke-Schlingloff allow distinguishing when either
no accepting states, accepting states of component 1 or accepting states of
component 2 have been encountered. This principle can be adapted for more
than one components in a straightforward manner.

There is another interpretation for the sequence-validness: abstraction. ¢
(M) can be considered to be a “specification” and M (Mz) the “implemen-
tation”, where specification is a more abstract version of the implementation.
Theorem 4.2 states that on one hand if it is possible to establish a sequence-
validness relation between two models s.t. M; | Mg then all properties
¢ (LTL formulas) that are sequence-valid in Mg are also sequence valid in
M. This means that instead of checking whether M; = ¢ it is possible to
transform M to a more abstract (and hopefully smaller) Mg and check the
same property on that model (Mg = ¢) and be sure that it holds on the
less abstract model.

4.2

On the other hand the sequence-validness relation defines a class of prop-
erties: precisely those properties that are retained in models that are equiva-
lent with respect to that relation. All properties that are expressable in LTL
and especially as w-regular languages are preserved by the sequence-validness
relation.

2.2 Safety and Liveness Properties

LTL properties can be classified into two categories: safety and liveness
properties. Safety properties state that some event never occurs and liveness
properties state that some event will eventually happen. The intuition is that
if a safety property is violated, there is a finite string of events that leads to
this undesired state or that the violation can be detected by examining past
events.

This may be easier to see in the original text if the definition there is
rewritten as follows:

e ¢ is a safety property, iff for every natural model M,

ME @ if IYM': (METo M) E

For natural models Ml is the model consisting of first i points of M,
M o M’ is the concatenation of both models. Here the safety property is a
property s.t. after certain point in execution (M[) it is not possible reach
a situation where the property would hold by any behaviour (M’, including
empty behaviour).

Liveness properties are also given a definition, but the neither of the
following chapters deals with them aside of mention in theorem 4.3 . In
short, the decomposition theorem states that any property can be divided
into a conjunction of a safety and liveness property. T is the only property
that is both a liveness and safety property. As the rest of the section deals
with preservation of safety properties the function of the definition of safety
and liveness formulas is to be able to recognize a safety formula. It is possible
to give syntactic rules for logic formulas so that a proposition built using these
rules is guaranteed to be a safety formula. Theorem 4.4 gives these syntactic
rules for LTL formulas. Safety properties can also be characterized very
naturally by past temporal logic, where all operators concern with events
before the current execution time.

A transition relation is image finite if there is a finite amount of successors
to every state. A transition system is finitary if its transition relation is
image finite and the number of initial states is finite. Theorem 4.5 states

4.3

4.4

4.5

that any finitary transition system defines a safety property, where finitary
transition system covers particularly w-regular and finite transition systems.
If the restriction of image finiteness on automatons would be lifted, it would
be possible to express liveness properties. For example, a transition system
that has all finite paths starting from the initial state corresponds to liveness
property (F*X_L) (see figure 4). Lemma 4.6 gives a weaker inverse statement
to theorem 4.5 that says that there are corresponding transition systems for
all w-regular safety properties.

Altogether, there are safety properties that can not be represented by
finitary transition systems, let alone syntactically constrained LTL formulas
of theorem 4.4. For LTL safety properties there exists a tableau procedure
that produces a corresponding M, transition system; this is described in
section 7.

Model checking for w-regular properties can be done by executing the
property transition system (M) and the model transition system (M4) in
parallel and to decide that L(M,) C L(M,,) every step in M, must have
a corresponding step in M,,. This maps straightforwardly to the context of
testing an implementation, so this approach is also known as specification
based testing.

Since safety properties are clearly a subset of properties that can be ex-
pressed (4.5, 4.6), it is possible to apply theorem 4.2 to safety properties as
well, which is done in theorem 4.7 . This means that the sequence-validness
relation preserves safety properties in particular, allowing them to be checked
from models that have been normalized using the sequence-validness relation.

2.3 Simulation Relations

The rest of this section describes a weaker relation than the sequence-validness
relation. In presence of nondeterminism, checking of language inclusion may
be hard and furthermore as sequence-validness only deals with traces of a
system, reasoning about the structure of the system may be needed. The
previous section considered only properties of one path throught the model,
hence it is named “linear time” world. In this section the structure preserving
transformations also preserve all paths through the model, so this is called
“branching time” world.

This is demonstrated in figure 1 (corresponds to figure 5 in original text),
where the two systems clearly have the same possible traces, but their be-
haviour is different. Upon start system 2 chooses nondeterministically ei-
ther a branch; after executing the chosen a-transition, it has already chosen
whether it can continue with b or ¢. This differs from system 1 that can
execute a and still be able to perform either b or c.

4.6

4.7

Figure 1: Two models 1 and 2 with different behaviour, yet 1 =2 and 2 |= 1.
For both P = {}, R = {a,b, c}.

A straightforward relation is the submodel relation: M is a submodel of
a model My (M; C M,) if, intuitively, a set of states (not initial states)
is removed from the original leaving a part of the original model and the
transition and property relations of the new model are modified so that they
don’t reference the removed states. A generated submodel contains only
those states of the model that are reachable from the initial state. All usual
temporal properties ! are preserved in generated submodel.

However, in order to preserve properties it is usually a better idea to com-
bine states rather than delete them. This leads to simulation relation, which
is a relation between the states in two models. M pstract Simulates M oncrete
(M onerete = Mapstract) When all actions of M pperere can be matched by
Mpsiract- A state in the abstract model may simulate several states of the
concrete model and thus there may be behaviours in the abstract model that
are not in the concrete model, but the abstract model is guaranteed to have

all behaviours of the concrete model.

e for models My = (Uy,Z;,w1) and My = (U, Ly, ws), a relation H C
U, x Us is a simulation between M; and M, if

- (’U)l, UJQ) € H
initial states must simulate each other

— Vp € P,u€U,v €U if (u,v) € H then u € Z;(p) iff v € Tr(p)
the state properties

— Yu,v: (u,v) € H and for all R, s.t. (u,u') € Z;(R) there is a '
s.t. (v,0v") € IH(R) and (uv',v") € H
simulating system should be able to match any transition of the

simulated and have the successor state simulate the successor state
of the original model

lUJsual” probably meaning those properties that do not refer to unreachable parts of
the system.

Simulation relation is a preorder (a reflexive and transitive relation) on the
class of all models (4.8). If we require that there is a preorder relation in both
directions (M; 2 My and My = M) then the resulting relation is reflexive
as well and is thus an equivalence (in case of simulation the corresponding
equivalence is bisimulation, see next section). Two models are in a simulation
relation if there exists a simulation relation between the models (4.9).

To summarize the relation between sequence-validness, submodel and
simulation relation: if Mconcrete C Mabstract then Mwncrete - Mabstv‘acta
furthermore, if -Mconcrete - Mabstract then Mconcrete ‘: Mabstract- If
the abstract model M gpsirace is deterministic (each state has at most one
successor), then it is possible to to state that Meoperete = Mapstract iff
Mconcrete - Mabstract-

A modal box formula is a formula without the diamond operator (“even-
tually”). Rules for constructing modal box formulas are

e literals and T, L are allowed

e if ¢, 1) are modal box formulas, then (p A ¥), (¢ V 9), [R]p are modal
box formulas

Lemma 4.10 ties together simulation relation and preservation of modal
box formulas (similar as 4.2 and 4.7 did for sequence-validness and LTL
properties). Note, that an for existing simulation relation it is possible to
reason about the validness of the formula in the model, but not the converse
is not possible — see 4.13 for more.

Simulation can characterize more expressive logics than modal box formu-
las, theorem 4.11 gives the same result for ACTL formulas. ACTL formulas
are a subset of CTL formulas, so that the CTL E quantifier is not used and
all temporal operators are prefixed by . This restricts the expressiveness
to those temporal properties that are valid in all paths of the model and
since simulation preserves all behaviours it is intuitive to see why ACTL is
preserved.

In order to be able give the converse lemma to 4.10 the models must be
restricted as in the case of safety properties earlier in the linear time world
(theorem 4.5). The need for this is presented in lemma 4.12 which in con-
junction with figure 7 presents two systems that can not be distinguished by
any modal logic formula (including modal box formulas); that is if any modal
logic formula ¢ is sequence valid in one of the models it must be sequence
valid in the other model (and conversely). Yet there are no corresponding
simulation relations that should exist if converse of 4.11 would hold. Espe-
cially M; = Ms does not hold, as each successor of a state in M should be

4.8

4.9

4.10

4.11

4.12
fig 7

mapped to some state in My and M has an infinite branch, whereas M,
does not have one.

Restricting the models to be image finite it is possible to give a relation
between simulation and modal box formulas (in 4.13) that is a companion 4.13
to 4.10, but holds in the converse case as well. Again, this means that once
M onerete 7 Mabstract 18 established it is possible to determine M gpsiract = @
and be sure that the result is same for M pperete = @ if is a modal box
formula.

For deterministic finite automata there are efficient algorithms for lan-
guage inclusion that can be used to check simulation for deterministic mod-
els. Below is an outline of an algorithm for creating a simulation relation
H = U; x U; between two nondeterministic finite models:

1. place all pairs of states with matching properties into the first iteration
of the relation H°

2. for the next iteration, place a pair of H" to H™"! if the model to be
simulated has a transition that the simulating model can match — this
simulated transition should end to some other pair in H”

Since this is a finite model, eventually H® = H™*! and the algorithm will
stop and then the intersection of all H" is the largest simulation relation.

3 Equivalence reductions

As noted before, equivalence is a symmetric preorder and preorders < can in-
duce an equivalences ~: M; >~ M, iff M; < My and My < M;. Submodel
ordering C induces isomorphism and sequence validness = induces equiva-
lence of the generated languages. Equivalences and especially bisimulation
can preserve more expressive logical properties than the preorders that have
been presented in previous section. Furthermore, distinguishing power can
also be thought of as an equivalence relation.

3.1 Bisimulations (p-morphisms)

Bisimulation ¢ is an equivalence relation between universes of two Kripke-

models (Z/{1, Il, wl), (UQ, IQ, ’wg)I
® w; & wp

e if u © v then u € Zy(p) iff v € Zy(p)

e if u ¢ vand (u,u’) € Z;(R) then there exists v’ s.t. (v,v") € Zy(R) and
ul i U,

e if u ¢ v and (v,v') € Zo(R) then there exists v’ s.t. (u,u’) € Z;(R) and
ul 2 U’

Two models M1, M are bisimilar if there is a bisimulation between them.
Figure 9 gives an example of bisimilar models which demonstrate the prop-
erties of bisimilar models given in fact 5.1. Figure 2 presents three bisimilar
models. For example state s1 of A is bismilar to state sl of B: in A it is
possible to s1 — s4, in B it is possible to s1 — s4 and states s4 of A and

54 of B are again bisimilar. Note that the path s1 — 52 SIS, JELAG, LN

s7 25 s6 -5 51 in model A is simulated by s1 — s2 5 s3 %5 in model
B, so bisimulation preserves all paths. Model C is otherwise similar to B,
but the two states s3, s5 have been merged as bisimilar. Another property of
bisimulation is that for bisimilar states the amount of transitions leaving the
state doesn’t need to be the same, but the set of transition names leaving
the states must match.

Figure 2: Three bisimilar models. R = {a,b,c},P = {}

The appendix A gives more examples of bisimulation of models in fig-
ure 2 and executions of a bisimulation algorithm, which may be useful in
understanding bisimulation.

Note that although there exists a simulation relation between two models
in both directions, it does not necessarily imply existence of a bisimulation
between the models. This can be seen in the two models in figure 10, the
difference in bisimulation can be noticed in the additional branch in the
system on the right side: bisimulation requires that b transition should be
possible after an a transition (see appendix A). In case of simulation the
requirement is that the other system should have some path that will execute
b after a.

5.1

fig 10

Models M; and M, are are equivalent with respect to the logic L (M =g,
M) if for all well formed formulas of L it holds that M; = ¢ iff My E ¢.
=y, is an equivalence relation. The relation =poy, for First Order Logic is the
elementary equivalence.

Lemma 5.2 gives the relation between bisimulation and modal logic:
bisimilar models are modally equivalent. The converse requires image finite-
ness of the models: image finite models are modally equivalent iff they are
bisimilar (theorem 5.3). And again, this enables replacing models with
(smaller) bisimilar ones so that all properties that can be expressed using
modal logic are preserved.

If the models are restricted even more it is possible to reason about more
expressive logics. Lemma 5.4 gives a connection between sequence-validness
and positive uTL (u calculus) formulas for finite models. Since modal logic
is a sublanguage of 4TL, models that are equivalent w.r.t. monotonic yTL
are also modally equivalent. This leads to theorem 5.5 that states that finite
models that are bisimilar are also monotonic pTL-equivalent.

Since bisimilarity is used to relate both =\, and =,7r, (5.2, 5.5) it can
be said (corollary 5.6) that if it is possible to distinguish finite models using a
uTL formula, then it is also possible to distinguish the models using a modal
logic formula, even though modal logic is less expressive than p-calculus. A
similar result for equal distinguishing power can be found for CTL* and
CTL as CTL* can be translated to uTL.

5.2

5.3

5.4

5.5

5.6

3.2 Distinguishing Power and Ehrenfeucht-Fraisse Games

As there are logics that have different expressiveness kbut still have the same
distinguishing power, it is useful to define these concepts. Logic L2 is at
least as expressive as L1 iff for any formula ¢, € L1 there exists a formula
¢y € L2 s.t. for all models M: M = ¢; iff M = ¢, (this could also
be phrased L1 is at most as expressive as L2). L1 and L2 have the same
expressive power if L1 is at least as expressive as L2 and vice versa — for
each formula in one logic there is an equivalent one in the second logic.

Logic L2 is at least as distinguishing as L1 if any two models that are
inequivalent w.r.t. L1 are inequivalent w.r.t. L2 — or iff M =1, M5 implies
M =11 Ms. L1 and L2 have the same distinguishing power if L1 is at least
as distinguishing as L2 and vice versa — or iff for all models it holds that
Ml =12 M2 iff Ml =11 Mz.

Fact 5.7 states that the expressiveness is a finer equivalence than distin-
guishability: that is distinguishability considers more logics to be the same
when compared to expressiveness.

A formula ¢ is preserved under bisimulations if for all models M; © M,

10

5.7

it holds that M; = ¢ iff My = . A logic L is bisimulation invariant, if all
well formed formulas of L are preserved under bisimulations.

As per theorem 5.2 modal logics are bisimulation invariant, but this also
holds for monotonic yTL (lemma 5.8). Furthermore bisimulation can be used
to define a connection between modal logics and first order logic: only those
first order formulas that are preserved under bisimulations can be translated
to modal logic (theorem 5.9). This result can be extended to for second order
logics and uTL as theorem 5.10.

A convinient way of imagining bisimulations (and equivalences w.r.t.
other logics) is Ehrenfeucht-Fraisse game. The game has two players Ann
and Bob, each having an unlimited number of identified pieces: ag,a,...
and by, by,.... The game is played on two Kripke-structures, where Ann
must show that the models are not bisimilar and Bob must show that they
are bisimilar. The game begins so that both place their first pieces on initial
states of different models. If the proposition labels on the models are not
matching Bob loses and the boards are not bisimilar. The game continues as
follows:

e Ann places her (i + 1)th piece on either of the boards honouring the
transition relation w.r.t placed pieces, that is, the piece in the prede-
cessor state of the (i + 1)th piece must have label a; or b;.

e Bob has to match Ann’s move on the other board by locating the ith
piece on that board and placing the piece honouring the transition
relation.

e if Bob can not match Ann’s move he loses, if he can play the game
forever he wins.

Ann can force a win within n rounds if she can place her piece such that
Bob loses immediately or after n — 1 rounds. Ann has a winning strategy if
there is n s.t. she can force a win — Bob has a winning strategy if Ann does
not have one. Theorem 5.11 relates Ann’s and Bob’s winning strategies to
existence of bisimulation relation between the game board models. The rules
of the game can be easily modified to capture the notion of equivalence with
respect to other logics.

3.3 Auto-bisimulations and Paige-Tarjan Algorithm

So far the bisimulation relation has been between two models. However it
is possible that a state in a model is bisimilar to another point in the same

11

5.8

5.9
5.10

5.11

model. For a simple example see figure 3: both states can bisimulate the
other state.

Figure 3: A model with both states bisimilar to each other.

The existence of these auto-bisimulations can be exploited for a bisimula-
tion minimization algorithm that searches for states that are auto-bisimilar
and combines them. By the definition of bisimulation it can be stated that
the union of auto-bisimulations is again an auto-bisimulation (lemma 5.12).
For each auto-bisimulation there exists greatest equivalence relation = that
includes the auto-bisimulation (¢ C=) and is also an auto-bisimulation. A
quotient of a model is another model where the states have been grouped into
equivalent classes and the transition relation has been modified accordingly.
Theorem 5.13 states that if the equivalence relation = is an auto-bisimulation,
then M < M=.

The quotient of the model with respect to its largest autobisimulation is
the minimal representation of the model.

In order to create an algorithm for calculating autobisimulations some
technical definitions are needed — below are intuitive explanations for these

e for any set of points P C U < R > P gives the set of those nodes that
have a transition to set P

e given a partition U to equivalence classes, a component w= is uniform
if the nodes in partition have the same labeling (propositions).

e a component w= is stable w.r.t set P if it either is possible to access
some states of P from partition w= or it is not possible to access any
state of P from w=

e a partition is stable if all components are uniform and stable w.r.t other
partitions

Theorem 5.14 states that the coarsest stable partition (the partition with
most states in it) is the largest auto-bisimulation. A sketch for a bisimulation
minimization algorithm is below:

e To construct the coarsest stable partition:

12

5.12

5.13

5.14

— start with a trivial partition of one component

— repeat until no new partitions are created and choose nondeter-
ministically

* 1. choose a component wy and a proposition p € P
2. split wg to two uniform partitions in which the other par-
tition has property p

* 1. choose components wg,wy and R € R

2. split wy to be stable w.r.t. wi to those that have a tran-
sition to wi and to those that have not

In practice the more sophisticated Paige-Tarjan algorithm can compute
the same in O(m -logn), where n is number of points in model and m is the
number of partitions in the result. See appendix for an implementation of
the Paige-Tarjan algorithm.

A Additional examples

Once Ocaml code in appendix B has been evaluated in the interpreter it
is possible to give other values than those that are in the code. Currently
the code contains model A of figure 2. If the code is compiled as such the
execution of the algorighm will be annotated:

> ocamlc -0 bisim bisim.ml
> ./bisim | grep =
=== Initial partition:{{s2,s7,}{sl,s4,s5,}{s3,s6,}}
== C is now:{{s1,s2,s3,s4,s5,86,s7,}}
== F is now:{{s2,s7,}{s1,s4,s5,}{s3,s6,}}
== Refined C to: {{s2,s7,}{s1,s3,s4,s5,s6,}}
= Refining F:{{s2,s7,}{s1,s4,s5,}{s3,s6,}}
= F after splitting with a: {{s1,s5,}{s2,s7,}{s4,}{s3,s6,}}
= F after splitting with b: {{s1,s5,}{s2,s7,}{s4,}{s3,s6,}}
= F after splitting with c: {{s1,s5,}{s2,s7,}{s4,}{s3,s6,}}
== Refined F to: {{s1,s5,}{s2,s7,}{s4,}{s3,s6,}}
== C is now:{{s2,s7,}{s1,s3,s4,s85,s6,}}
== F is now:{{s1,s5,}{s2,s7,}{s4,}{s3,s6,}}
== Refined C to: {{s1,s5,}{s2,s7,}{s3,s4,s6,}}
= Refining F:{{s1,s5,}{s2,s7,}{s4,}{s3,s6,}}
F after splitting with a: {{s1,s5,}{s2,s7,}{s4,}{s3,s6,}}
F after splitting with b: {{s1,s5,}{s2,s7,}{s4,}{s3,s6,}}
F after splitting with c: {{s1,s5,}{s2,s7,}{s4,}{s3,s6,}}

13

== Refined F to: {{s1,s5,}{s2,s7,}{s4,}{s3,s6,}}

== C is now:{{s1,s5,}{s2,s7,}{s3,s4,s6,}}

== F is now:{{s1,s5,}{s2,s7,}{s4,}{s3,s6,}}

== Refined C to: {{s1,s5,}{s2,s7,}{s3,s6,}{s4,}}

= Refining F:{{s1,s5,}{s2,s7,}{s4,}{s3,s6,}}

= F after splitting with a: {{s1,s5,}{s2,s7,}{s4,}{s3,s6,}}
= F after splitting with b: {{s1,s5,}{s2,s7,}{s4,}{s3,s6,}}
= F after splitting with c: {{s1,s5,}{s2,s7,}{s4,}{s3,s6,}}
== Refined F to: {{s1,s5,}{s2,s7,}{s4,}{s3,s6,}}

== C is now:{{s1,s5,}{s2,s7,}{s3,s6,}{s4,}}

== F is now:{{s1,s5,}{s2,s7,}{s4,}{s3,s86,}}

The final C' and F' both contain the largest autobisimulation state parti-
tions. If the grep is omitted even more diagnostic of the algorithm execution
can be seen.

In order to enter other models perhaps the easiest way is to use the inter-
preter create new initial partitions. Once the program has been interpreted
it is possible to give the following commands to enter model B of figure 2:

(x We need only 5 states *)

let u_b = add_states 5;;

val u_b : States.t = <abstr>

(* The transition relation encoding the model *)

let b_trans = add_trans_rel [

("a", ("s1","s2")); ("a",("s1","s4")); ("b",("s2","s3"));
("a",("s4","s3")); ("c",("s4","s5")); ("b",("s3","s1"));
(llbll s ("85“ s llsill)) ;] s

val a_trans : Trans_rel.t = <abstr>

(* The tnitial partitions *)

let b_init_coarse = Partition.add u_b (Partition.empty);;
val b_init_coarse : Partition.t = <abstr>

let b_init_f = Partition.add u_b (Partition.empty);;
val b_init_f : Partition.t = <abstr>

(* Now the algorithm can be exzecuted: *)

bisim b_init_coarse b_init_f r b_init_coarse b_trans;;

== F is now:{{s1,}{s2,}{s3,s5,}{s4,}}
- : Partition.t = <abstr>

Here are the definitions for the systems in original papers figure 10:

let r2 = Transitions.add "a" (Transitions.add "b" (Transitions.empty));;

14

let u_left = add_states 4;;

let u_right = add_states 5;;

let left_trans = add_trans_rel [

(llall, (llslll, ”82")) R (Ilall, (IISQII,IISSII)) R (llbll s (llszll ,“84")) ;] s
let right_trans = add_trans_rel [

("a", ("s1","s2")); ("a",("s2","s3"));("b",("s2","s4"));
("a",("s1","s5")); ("a",("s5","s4"));1;;

let left_i_c = Partition.add u_left (Partition.empty);;
let right_i_c = Partition.add u_right (Partition.empty);;
let left_i_f = Partition.add u_left (Partition.empty);;
let right_i_f = Partition.add u_right (Partition.empty);;
bisim left_i_c left_i_f r2 left_i_c left_tranms;;

== F is now:{{s1,}{s2,}{s3,s4,}}

bisim right_i_c right_i_f r2 right_i_c right_trans;;

== F is now:{{s1,}{s2,}{s3,s4,}{s5,}}

B Bisimulation implementation

This section gives Ocaml source code for implementation of the Paige-Tarjan
bisimulation algorithm and example execution of the algorithm. This may
be helpful in understanding both the bisimulation relation and the execution

of the algorithm.

(*

To calculate strong autobisimulation relation
using Clarke-Schlinghoff presentation of

the Paige-Tarjan algorithm (p. 1690).

Does not handle state properties and only
produces the smallest state partition,
also the transition relation is not
modified.

This is in Caml, an ML dialect.
Compiler & environment available at
http://www.ocaml.org

¥ O K X X X X X X X ¥ X ¥ *

To compile: ocamlc -0 bisim bisim.ml

*

)

15

open Set;;
open Printf;;

module Transitions = Set.Make (struct
type t = string
let compare = compare

end)

module States = Set.Make (struct
type t = string
let compare = compare

end)

(* ("trans_name", (start_state,target_state)) *)
module Trans_rel = Set.Make (struct

type t = (string * (string * string))

let compare = compare
end)
module Partition = Set.Make (struct
type t = States.t
let compare = compare

end)

(* Helper function for entering state names *)
let rec add_states n =
if n = 0 then
States.empty
else
States.add ("s" =~ (string_of_int n)) (add_states (n - 1));;

(* Helper function that creates a set out of a list *)
let rec add_trans_rel list =
match list with
[1 -> Trans_rel.empty
| x::the_rest ->
Trans_rel.add x (add_trans_rel the_rest);;

let print_set set =
let print_item item =
print_string (item =~ ",") in
print_string "{";

16

States.iter print_item set;
print_string "}";;

let print_partition partition =
print_string "{";
Partition.iter print_set partition;
print_string "}";;

*

(
Take in a set of transition relations
’trans_rel’ (elements of form ("a",("s1","s2")))
and return a set of states that contains
the starting states of th4e tramsitions
* (for the example item above it would be ’s1’).
*)
let rec starting_state_to_set trans_rel =
(* returns the source target state of ’item’ %)
let starting item =
(fst (snd item)) in
if Trans_rel.is_empty trans_rel then
States.empty
else
let item = Trans_rel.choose trans_rel in
States.add (starting item)
(starting_state_to_set (Trans_rel.remove item trans_rel));;

* ¥ ¥ *

(*

* The set of ’trans predecessors’,

* those states that can take transition
* ’trans’ to reach ’set’ according to
* ’relation’.

*

* Corresponds to <R>U in the text.

*

* prec "a" u trans;;

* prec "a" (Partition.choose c) trans;;
*)

let prec trans_name set relation =
(¥ true if the tag of ’item’ is equal ’trans’ *)
let trans_matches item =
trans_name = (fst item) in

17

(* true if the target state of ’item’ is in ’set’ *)
let target_in item =
(States.mem (snd (snd item)) set) in
starting_state_to_set
(Trans_rel.filter target_in
(Trans_rel.filter trans_matches relation));;

(*
* initial_partition r u trans;;
*)
let initial_partition transitions set relation =
let rec initial_iter result trans_names =
match trans_names with
[-> result
| x::the_rest ->
let temp = prec x set relation in
initial_iter (temp::result) the_rest in
initial_iter [] transitionms;;

(

*

Split each set of a partition w.r.t some

transition and returns a partition with

the splitted sets.

Note that here we remove the empty set

from the refined partition after each refinition --
the algorithm does not mention that case and

it probably does not matter, but it looks

cleaner that way.

¥ O X X X X X *x

*)
let rec split_all_sets trans partition relations results =
if Partition.is_empty partition then
results
else
let one_partition = Partition.choose partition in
ignore(printf " partitioning with %s " tranms);
print_set one_partition;
let pred = prec trans one_partition relations in
let new_1 = States.inter one_partition pred
and new_2 = States.diff one_partition pred in
ignore(printf " to ");
print_set new_1;

18

print_set new_2; print_newline ();
let results = Partition.add new_2 (Partition.add new_1 results) in
split_all_sets trans (Partition.remove one_partition partition)
relations
(Partition.remove States.empty results);;

(*
* Performs the initial partitioning.
*

*)
let rec initial_partition transitions init_partitions relations =
if Transitions.is_empty transitions then
init_partitions
else
let trans = Transitions.choose transitions in
let new_partition = split_all_sets trans init_partitions relations
Partition.empty in
initial_partition (Transitions.remove trans transitions)
new_partition relations;;

let rec choose_from_fine bigger partition =
ignore(printf " try choosing one from F:");
print_partition partition; print_newline();
if Partition.is_empty partition then
States.empty
else
let candidate = Partition.choose partition in
if States.subset candidate bigger then

begin
ignore(printf " chose ");
print_set candidate; print_newline ();
candidate;
end
else

choose_from_fine bigger (Partition.remove candidate partition);;

(*

* Refinement for the coarse partition.

* This corresponds to choosing w and wil
* in the algorithm. Returns both w and

* wl.

19

*)
let rec choose_from_coarse coarse fine =
let filtered_coarse = Partition.diff coarse fine in
ignore (printf " try choosing one from C:");
print_partition filtered_coarse; print_newline();
if Partition.is_empty filtered_coarse then
(States.empty, States.empty)

else
let candidate_in_coarse = Partition.choose filtered_coarse in
ignore (printf " chose "); print_set candidate_in_coarse;

print_newline ();
let candidate_in_fine = choose_from_fine candidate_in_coarse fine in
if States.is_empty candidate_in_fine then
choose_from_coarse (Partition.remove candidate_in_coarse coarse) fine
else
(candidate_in_coarse, candidate_in_fine);;

(%

* Splits the w0 partition to four components

*)

let split_into_four trans w0 wl w2 trans_rel =
let part_wl = prec trans wl trans_rel
and part_w2 = prec trans w2 trans_rel in
let one = States.inter (States.inter w0 part_wl) part_w2
and two = States.diff (States.inter w0 part_wl) part_w2
and three = States.inter (States.diff w0 part_wl) part_w2
and four = States.diff (States.diff w0 part_wl) part_w2 in

(one, two, three, four);;

(%

* Split all the sets in ’f’ w.r.t trans using wl and w2

*)

let rec four_split_all_sets trans f trans_rel wl w2 result =
if Partition.is_empty f then

result
else
let wO = Partition.choose f in
ignore(printf " now splitting ");

print_set w0O; print_newline();
let (one, two, three, four) = split_into_four trans wO wl w2 trans_rel
in

20

ignore(printf " one: "); print_set one;
print_newline();

ignore(printf " two: "); print_set two;
print_newline();

ignore(printf " three: "); print_set three;
print_newline();

ignore(printf " four: "); print_set four;

print_newline();
let new_F = Partition.remove w0 result in
let new_F = Partition.add four (Partition.add three
(Partition.add two
(Partition.add one new_F)))
in
(* ignore(printf " F now:\n"); print_partition new_F; *)
if Partition.mem States.empty new_F then
four_split_all_sets
trans (Partition.remove w0 f) trans_rel wl w2
(Partition.remove States.empty new_F)
else
result;;

(%
* The loop for the
* for all R \in \mathcal{R} and w_0 \in F do
* part of the algorithm.
*)
let rec main_partition transitions old_partition relations wl w2 =
if Transitions.is_empty transitions then
old_partition
else
(* For all transitions \in r *)
let trans = Transitions.choose transitions in
(* For all wO \in F with transition trans *)
ignore(printf " splitting w.r.t %s\n" trans);
let new_partition = four_split_all_sets trans old_partition relations
wl w2 Partition.empty in
ignore(printf " = F after splitting with %s: " trans);
print_partition new_partition; print_newline();
main_partition (Transitions.remove trans transitions)
new_partition relations wl w2;;

21

(

*

Simulates Partition.remove.

A stupid auxiliary function that should be done
at the module level. My ML ineptitude. It seems
that Partition.remove does not find the set
unless it is the first one in the set. Must be
related to non-working of Partition.mem

¥ ¥ X X X X

*)
let rec rem_set_from_partition set partition result =
if Partition.is_empty partition then
result
else
let from_p = Partition.choose partition in
if States.equal set from_p then
rem_set_from_partition set (Partition.remove from_p partition) result
else
rem_set_from_partition set
(Partition.remove from_p partition)
(Partition.add from_p result);;

€
* Simulates Partition.mem
* A stupid auxiliary function that should be done
* at the module level. My ML ineptitude. It seems
* that Partition.remove does not find the set
* unless it is the first one in the set.
*)
let rec set_in_partition set partition =
if Partition.is_empty partition then
false
else
let from_p = Partition.choose partition in
if States.equal set from_p then
true
else
set_in_partition set
(rem_set_from_partition from_p partition (Partition.empty));;

(*
* Simulates Partition.equal
* See above for comments on ’rem_set_from_partition’

22

* and ’set_in_partition set partition’.
* Compare two partitions, return true if
* both partitions have the same sets.
* This really should be given to the
* module as an the compare function.
*)
let rec compare_partitions a b =
if Partition.is_empty a then
if Partition.is_empty b then
(* If both are empty we are done *)
true
else
false
else
let from_a = Partition.choose a in
if Partition.is_empty b then
false
else
if set_in_partition from_a b then
begin
(*
* Both partitions have the same item,
* remove the item from both and continue
*)
compare_partitions
(rem_set_from_partition from_a a Partition.empty)
(rem_set_from_partition from_a b Partition.empty)
end
else
false;;

(*
* The main loop of the whole algorithm
* while C \neq F do

*)
let rec refine ¢ f transition_rel transition_names =
ignore(printf " == C is now:"); print_partition c; print_newline();
ignore(printf " == F is now:"); print_partition f; print_newline();
if (compare_partitions ¢ f) then
f
else

23

let (w, wl) = choose_from_coarse ¢ f in

let w2 = States.diff w wl in

let refined_C = Partition.remove w c in

let refined_C = Partition.add w2 (Partition.add wl refined_C) in

ignore(printf " == Refined C to: ");
print_partition refined_C; print_newline();
ignore(printf " = Refining F:");

print_partition f; print_newline();
let refined_F = main_partition transition_names
f transition_rel wl w2 in
ignore(printf " == Refined F to: ");
print_partition refined_F; print_newline ();
refine refined_C refined_F transition_rel transition_names;;

(*
¥ bisim ¢ £ r ¢ trans;;
*)
let bisim ¢ f transition_names all_states transition_rel =
let initial_F = initial_partition
transition_names all_states transition_rel in
ignore(printf "=== Initial partition:");
print_partition initial_F; print_newline();
refine ¢ initial_F transition_rel transition_names;;

(¥ Below are examples of use %)

(* Transition names *)
let r = Transitions.add "a"
(Transitions.add "b" (Transitions.add "c" (Transitions.empty)));;

(* State names from 1 to 7 *)
let u = add_states 7;;

(* The transition relation *)

let a_trans = add_trans_rel [
("a",("sl","s2")); ("a",("si","s4")); (llbll’(IISQII’IISSII));
("b",(”SB","SS”)); (llall’(llssll’lls4ll)); ("a",("sS","s?"));
("b",("s?","s6")); (ucu’(us4u’u33u)); ("a",("s4","36"));
("b",("S6","Sl”))];;

(* The initial partitions *)

24

let a_init_coarse = Partition.add u (Partition.empty);;
let a_init_f = Partition.add u (Partition.empty);;

(*
* The initial values
States.elements (List.hd (Partition.elements a_init_coarse));;
- : States.elt list = ["s1"; "s2"; "s3"; "s4"; "sb"; "s6"; "s7"]
*)

(*
* Now its possible to say:
¥ bisim a_init_coarse a_init_f r a_init_coarse a_trans;;

*)

€

* Note that the call to bisim is hardwired here -
* the values must be changed in code in order

* for the compiled code to have other behaviour.

*)
if !Sys.interactive
then ()

else ignore(bisim a_init_coarse a_init_f r a_init_coarse a_trams);;

25

