Outline

- Symbolic model checking
- Binary Decision Diagrams
- Model checking CTL
- Relational μ-calculus
- Bounded Model Checking
- Partial Order Methods

Symbolic Model Checking: Example

Let $\mathcal{P}=\left\{v_{1}, v_{2}, v_{3}\right\}$. Then the formula $\left(v_{1} \wedge v_{2}\right) \vee v_{3}$ represents the set
$\{110,001,011,101,111\}$, where 0 stands for false and 1 for true and the a string denotes the valuation for the variables in increasing index order.

Representing the transition relation of the program can be done by a propositional formula over $\mathcal{P}=\left\{v_{1}, \ldots, v_{m}, v_{1}^{\prime}, \ldots, v_{m}^{\prime}\right\}$.

Let $R=\left(v_{1} \leftrightarrow \neg v_{1}^{\prime}\right) \wedge\left(v_{2} \rightarrow v_{2}^{\prime}\right) \wedge\left(v_{2} \wedge v_{3} \rightarrow v_{3}^{\prime}\right)$ From the state $v=$ $v_{1} \wedge v_{2} \wedge \neg v_{3}$ the reachable states are characterized by $v^{\prime}=\neg v_{1}^{\prime} \wedge v_{2}$.

The propositional expression representing the set of successors is in terms of primed variables is:

$$
\exists \vec{v}(v \wedge R) .
$$

Symbolic Model Checking: Introduction

- Symbolic model checking tries to alleviate the state space explosion problem by using efficient encodings of the state space.
- The state space is encoded using an implicit representation.
- For model checking we then need a symbolic representation of the transition relation and the temporal operators.
- One symbolic encoding is using boolean functions (propositional logic)

Symbolic Model Checking: Binary Decision Diagrams

Any formula can be converted to using only Ite with the Shannon expansion:

$$
\varphi \leftrightarrow \operatorname{Ite}(v, \varphi\{v:=\top\}, \varphi\{v:=\perp\})
$$

Example. Let $\varphi=\left(v_{1} \wedge v_{2}\right) \rightarrow v_{3}$. We expand the variables in descending index order. Then the corresponding INF is:

$$
\begin{aligned}
\varphi & =\operatorname{Ite}\left(v_{3}, \varphi_{1}, \varphi_{0}\right) \\
\varphi_{1} & =\operatorname{Ite}\left(v_{2}, \varphi_{11}, \top\right) \\
\varphi_{0} & =\operatorname{Ite}\left(v_{2}, \varphi_{01}, \top\right) \\
\varphi_{11} & =\operatorname{Ite}\left(v_{1}, \top, \top\right) \\
\varphi_{01} & =\operatorname{Ite}\left(v_{1}, \perp, \top\right)
\end{aligned}
$$

The expression can be visualized as an expression tree called a decision tree.

Symbolic Model Checking: Binary Decision Diagrams

Finding the shortest formula representing a given set is co-NP-hard. Therefore we need efficient methods for manipulating the formulae, which can become very large. Binary Decision Diagrams provide such methods.

We define the three-place connective $\operatorname{Ite}\left(\varphi, \psi_{T}, \psi_{F}\right)$ ('if-then-else') in the following way:

$$
\operatorname{Ite}\left(\varphi, \psi_{T}, \psi_{F}\right) \stackrel{\text { def }}{=}\left(\varphi \wedge \psi_{T}\right) \vee\left(\neg \varphi \wedge \psi_{F}\right)
$$

Any propositional formula can be expressed using Ite and the constants \top, \perp as $\varphi \rightarrow \psi \leftrightarrow \operatorname{Ite}(\varphi, \psi, \top)$.

Symbolic Model Checking: Binary Decision Diagrams

- No two distinct nodes u and v have the same variable name and low- and highsuccessor.
- No variable u has identical low- and high-successor, i.e. $\operatorname{low}(u) \neq \operatorname{high}(u)$.

Symbolic Model Checking: Binary Decision Diagrams

A binary decision diagram (BDD) is a rooted, directed acyclic graph which has the following characteristics.

- There are one or two terminal nodes with zero outdegree labeled 0 and 1 .
- Each variable node u has two outgoing edges $\operatorname{low}(u)$ and $\operatorname{high}(u)$
- Each variable node u is associated with a variable $\operatorname{var}(u)$.
- All paths in the graph respect the given linear ordering $x_{1}<x_{2}<\cdots<x_{n}$.

Symbolic Model Checking: Binary Decision Diagrams

Theorem (Canonicity). For any function $f: \mathbb{B}^{n} \rightarrow \mathbb{B}$ there is exactly one $\operatorname{BDD} u$ with variable ordering $v_{1}<v 2<\cdots<v_{n}$ such that $f^{u}=f\left(v_{1}, v 2, \ldots, v_{n}\right)$.

Proof: (sketch). The proof proceeds by induction on the number of arguments of f. For $n=0$ the two possible boolean functions are true and false. Each of these have a unique BDD representation T and \perp. Since redundant tests are always removed, a BDD with a variable node must be non-constant. Let $f\left(v_{1}, \ldots, v_{n}, v_{n+1}\right)$ be a function of $n+1$ arguments. Define $f_{i}\left(x_{2}, \ldots, x_{n+1}\right)=f\left(i, v_{2}, \ldots, v_{n+1}\right), i \in \mathbb{B}$. By the induction hypothesis both f_{0} and f_{1} have unique BDD representations u_{0} and u_{1} such that $f^{u_{0}}=f_{0}$ and $f^{u_{1}}=f_{1}$. By Shannon's expansion we have that:

$$
f\left(v_{1}, v_{2}, \ldots, v_{n+1}\right)=\operatorname{Ite}\left(v_{1}, f_{1}, f_{2}\right)
$$

A simple case analysis ($u_{0}=u_{1}$ and $u_{0} \neq u_{1}$) shows that this resultant BDD is unique.

Symbolic Model Checking: Binary Decision Diagrams

- We identify a BDD by its root node u.
- The true branch of a node is denoted $\operatorname{high}(u)$ and the false branch is denoted $\operatorname{low}(u)$.

A $\operatorname{BDD} \varphi^{u}$ defines a boolean function in the following way

```
\(\varphi^{0}=0\)
\(\varphi^{1}=1\)
    \(\varphi^{u}=\operatorname{Ite}\left(\operatorname{var}(u), \varphi^{h i g h(u)}, \varphi^{\text {low }(u)}\right), u\) is a variable node.
```


Binary Decision Diagrams: Algorithms and Implementation

function PL2BDD (Formula φ) : (Nodeset, Bdd) $=$
Nodeset table $:=\{ \} ; / *$ Table of BDD nodes*/
Bdd max $:=1$;
Bdd result $:=\operatorname{BDD}(\varphi, 1)$;
return (table, result)
function $\operatorname{BDD}($ Formula $\varphi, \operatorname{Bddvar} i):=\operatorname{Bdd}$
if $i>n$ then return eval $(\varphi) /{ }^{*} \varphi$; is constant*/
else $\delta_{1}:=\operatorname{BDD}\left(\varphi\left\{v_{i}:=\perp\right\}, i+1\right)$;
$\delta_{2}:=\operatorname{BDD}\left(\varphi\left\{v_{i}:=\top\right\}, i+1\right) ;$
if $\delta_{1}=\delta_{2}$ then return δ_{1};
else if $\exists \delta:\left(\delta, i, \delta_{1}, \delta_{2}\right) \in$ table then return δ;
else $\max :=\max +1$; table $:=$ table $\cup\left\{\left(\max , i, \delta_{1}, \delta_{2}\right)\right\}$; return max;

Binary Decision Diagrams: Algorithms and Implementation

- The set of BDD nodes is implemented as a hash table.
- Let $\delta=\operatorname{Ite}\left(v, \delta_{1}, \delta_{2}\right)$, then the hash table maps triples $\left(v, \delta_{1}, \delta_{2}\right)$ to δ.
- Each BDD is identified by its variable and two children. A reduced BDD can now be created by recursively performing the Shannon expansion on the formula.

```
Binary Decision Diagrams: Algorithms and Implementation
function BDDImp (Bdd }\varphi,\mathrm{ Bdd }\psi\mathrm{ ) : Bdd =
    if }\varphi=0\mathrm{ or }\psi=1\mathrm{ then return 1;
    else if \varphi=1 return \psi;
    else if \psi}=0\mathrm{ and ( }\varphi,i,\mp@subsup{\varphi}{1}{},\mp@subsup{\varphi}{2}{})\in\mp@subsup{\operatorname{table}}{\varphi}{
        then return new_node(i, BDDImp( }\mp@subsup{\varphi}{1}{},0),\operatorname{BDDImp}(\mp@subsup{\varphi}{2}{},0))
    else /* (\varphi,i,\mp@subsup{\varphi}{1}{},\mp@subsup{\varphi}{2}{})\mathrm{ and ( }\psi,j,\mp@subsup{\psi}{1}{},\mp@subsup{\psi}{2}{}\mp@subsup{)}{}{*}/
        if (i=j) then
        return new_node(i, BDDImp ( }\mp@subsup{\varphi}{1}{},\mp@subsup{\psi}{1}{}),\operatorname{BDDImp}(\mp@subsup{\varphi}{2}{},\mp@subsup{\psi}{2}{}))
        else if (i<j) then
        return new_node(i,BDDImp ( }\mp@subsup{\varphi}{1}{},\psi),\operatorname{BDDImp}(\mp@subsup{\varphi}{2}{},\psi))\mathrm{ ;
        else if (i>j) then
        return new_node(i,\operatorname{BDDImp}(\varphi,\mp@subsup{\psi}{1}{}),\operatorname{BDDImp}(\varphi,\mp@subsup{\psi}{2}{}));
function new_node(Bddvar i, Bdd }\mp@subsup{\delta}{1}{},\operatorname{Bdd}\mp@subsup{\delta}{2}{}):=\operatorname{Bdd
    if }\mp@subsup{\delta}{1}{}=\mp@subsup{\delta}{2}{}\mathrm{ then return }\mp@subsup{\delta}{1}{}\mathrm{ ;
    else if }\exists\delta:(\delta,i,\mp@subsup{\delta}{1}{},\mp@subsup{\delta}{2}{})\in\mathrm{ table then return }\delta\mathrm{ ;
    else max }:=\operatorname{max}+1;\mathrm{ table }:=\mathrm{ table }\cup{(\operatorname{max},i,\mp@subsup{\delta}{1}{},\mp@subsup{\delta}{2}{\prime})};\mathrm{ return max;
```


Binary Decision Diagrams: Algorithms and Implementation

- The size of the constructed BDD can greatly depend on the ordering of the variables. Example $\left(v_{1} \leftrightarrow v_{3}\right) \wedge\left(v_{2} \leftrightarrow v_{4}\right)$.
- A good ordering can result in a BDD linear w.r.t the number of variables while a bad ordering may result in an exponential BDD.
- Finding the optimal ordering is an NP-hard problem.
- There provably exists boolean expression which always result in an exponential BDD, irrespectively of the variable ordering.

Symbolic Model Checking for CTL

- We describe algorithms for computing a BDD representation $\varphi^{\mathcal{F}}$ of the set states where the formula φ holds.
- The system is described by variables $\vec{v}=\left\{v_{1}, \ldots, v_{n}\right\}$. The transition relation R is over the variables $\left\{v_{1}, \ldots, v_{n}, v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}$.
- For each $p \in \mathcal{P}$ a BDD is given which represents the set $\mathcal{I}(p)$.
- Computing the BDDs for the propositional case is easy. We simply use the algorithms described the in the previous section.
- How do we compute $\mathbf{A}\left(\varphi \mathbf{U}^{+} \psi\right)$ and $\mathbf{E}\left(\varphi \mathbf{U}^{+} \psi\right)$?

Binary Decision Diagrams: Algorithms and Implementation

- Any boolean operation can be implemented linear time w.r.t. input BDDs
- Most BDD-packages use separate algorithms for each operator for increased efficiency.
- For model checking we still need existential quantification.

```
function BDDExists (Bdd }\varphi\mathrm{ , Vars }\vec{v}\mathrm{ ) : Bdd =
    if \varphi=\in{0,1} then return \varphi;
    else /* (\varphi,i, \varphi , , \varphi ) ) table*/
        \delta
        if }i\in\vec{v}\mathrm{ then return BDDApply ( }\vee,\mp@subsup{\delta}{1}{},\mp@subsup{\delta}{2}{})\mathrm{ ;
    else return new_node(i, \delta},\mp@code{,}\mp@subsup{\delta}{2}{})\mathrm{ ;
```


Relational μ-calculus: Introduction

- The relational μ-calculus is rich logical language. It can be seen as a first order predicate logic with a recursion operator.
- The symbolic techniques presented previously can also be extended for model checking this expressive logic.

Symbolic Model Checking for CTL

Essentially, we only convert the previously presented algorithm to symbolic terms.
$\mathbf{E}\left(\psi_{2} \mathbf{U}^{+} \psi_{1}\right)$: We must compute the least fixpoint of the the set $\left\{w \mid \exists w^{\prime}\left(w \prec w^{\prime} \wedge\left(w^{\prime} \in\left(\psi_{1}^{\mathcal{F}} \cup \psi_{2}^{\mathcal{F}} \cap E\right)\right)\right\}\right.$, where E is an intermediate result of the iteration
$\mathbf{A}\left(\psi_{2} \mathbf{U}^{+} \psi_{1}\right)$: The greatest least of the set
$\left\{w \mid \forall w^{\prime}\left(w \prec w^{\prime} \rightarrow\left(w^{\prime} \in\left(\psi_{1}^{\mathcal{F}} \cup \psi_{2}^{\mathcal{F}} \cap E\right)\right)\right\}\right.$ must be computed.
For $\mathbf{E}\left(\psi_{2} \mathbf{U}^{+} \psi_{1}\right)$:
$E_{0}\left(w^{\prime}\right)=\emptyset$
$E_{i+1}(w)=E_{i}(w) \vee \exists w^{\prime}\left(R\left(w, w^{\prime}\right) \wedge\left(\psi_{1}^{\mathcal{F}}\left(w^{\prime}\right) \vee\left(\psi_{2}^{\mathcal{F}}\left(w^{\prime}\right) \wedge E_{i}\left(w^{\prime}\right)\right)\right)\right.$, where $\psi_{1}^{\mathcal{F}}, \psi_{2}^{\mathcal{F}}$ and E are BDDs.

Fixpoint calculations with BDDs are easy, as equality checking is a constant time operation.

Relational μ-calculus: Syntax

Assume that the symbols $(),, \perp, \rightarrow,=, \exists, \mu, \lambda$ are not in the signature. A well-formed formula has the following syntax:

- $\perp,(\varphi \rightarrow \psi)$, where φ and ψ are well-formed formulas,
- $x_{1}=x_{2}$, where x_{1} and x_{2} are individual variables of the same type,
- $\exists x \varphi$, where φ is a well-formed formula, and x is an individual variable, or
- $\rho x_{1} \ldots x_{n}$, where ρ is a relation term of type $\left(D_{1}, \ldots, D_{n}\right)$, and x_{i} is an individual variable of type D_{i}.

Relational μ-calculus: Preliminaries

- A collection of disjoint sets with a collection of relations over the sets is called a (typed) structure.
- A pair $\Sigma=(\mathcal{D}, \mathcal{R})$ is called a signature, where \mathcal{D} is a finite set of domain names and \mathcal{R} is is a set of relation symbols.
- Each relation symbol has an associated type τ.
- An interpretation \mathcal{I} assign a structure S to signature Σ. Formally, $\mathcal{I}: \Sigma \rightarrow S$.
- For relation a R with type $\tau(R)=\left(D_{1}, \ldots, D_{n}\right)$ the interpretation is $\mathcal{I}(R) \subseteq$ $\mathcal{I}\left(D_{1}\right) \times \cdots \times \mathcal{I}\left(D_{n}\right)$.

Relational μ-calculus: Models and Semantics

A relation model $\mathcal{M}=(S, \mathcal{I}, \mathbf{v})$ for a signature Σ consists of a structure S, an interpretation \mathcal{I} and variable valuation \mathbf{v}. The semantics are as follows:

- $x^{\mathcal{M}}=\mathbf{v}(x)$, if x is an individual variable,
- $\perp^{\mathcal{M}}=$ false,
- $(\varphi \rightarrow \psi)^{\mathcal{M}}=$ true iff $\varphi^{\mathcal{M}}=$ false or $\psi^{\mathcal{M}}=$ true
- $\left(x_{1}=x_{2}\right)^{\mathcal{M}}=$ true iff $x_{1}^{\mathcal{M}}=x_{2}^{\mathcal{M}}$,
- $(\exists x \varphi)^{\mathcal{M}}=\operatorname{true}$ iff $\varphi^{\left(S, \mathcal{I}, \mathbf{v}^{\prime}\right)}=$ true and \mathbf{v}^{\prime} differs from \mathbf{v} at most in x.

Relational μ-calculus: Syntax

The relation terms have their own syntax. Very complex relation can be formed using λ-abstraction or μ-recursion. A relation term of type $\left(D_{1}, \ldots, D_{n}\right)$ is

- a relation symbol R or a relation variable X of type $\left(D_{1}, \ldots, D_{n}\right)$,
- $\lambda x_{1} \ldots x_{n} \varphi$, where φ is a well-formed formula and each x_{i} is an individual variable of type D_{i}, or
- $\mu X \rho$, where X is a relation variable of type $\left(D_{1}, \ldots, D_{n}\right)$, and ρ a relation term which is positive in X.

A relational term ρ is positive in X if every occurrence of X is under an even number of negation signs.

Relational μ-calculus: Expressivity

- The expressive power of the relational μ-calculus is between first-order logic and second order logic.
- With the μ-recursion operator all recursive functions of arithmetic can be defined. This means that on infinite domains the relational μ-calculus has the expressive power of Turing machines.
- The addition-relation on natural numbers can be defined in the following way.
- Let Z be the constant zero and S the successor relation. The addition-relation is defined by

$$
\mu X(\lambda x y z(Z x \wedge y=z \vee \exists u v(S u x \wedge S v z \wedge X u y v)))
$$

Relational μ-calculus: Models and Semantics

- $\left(\rho x_{1} \ldots x_{n}\right)^{\mathcal{M}}=$ true iff $\left(x_{1}^{\mathcal{M}}, \ldots, x_{n}^{\mathcal{M}}\right) \in \rho^{\mathcal{M}}$,
- $R^{\mathcal{M}}=\mathcal{I}(R)$, if R is a relation symbol, i.e. the name is connected to the preselected interpretation,
- $X^{\mathcal{M}}=\mathrm{v}(X)$, if X is a relation variable,
- $\left(\lambda x_{1} \ldots x_{n} \varphi\right)^{\mathcal{M}}=\left\{\left(d_{1}, \ldots, d_{n}\right) \mid \varphi^{\left(S, \mathcal{I}, \mathbf{v}^{\prime}\right)}=\right.$ true where \mathbf{v}^{\prime} differs form \mathbf{v} only in the assignment of d_{i} to x_{i}, i.e. $\left(\lambda x_{1} \ldots x_{n} \varphi\right)^{\mathcal{M}}$ is the relation consisting of all tuples of objects for which φ is true, and
- $(\mu X \rho)^{\mathcal{M}}=\cap\left\{Q \mid \rho^{\mathcal{F}}(Q) \subseteq Q\right\}$, where $\rho^{\mathcal{F}}(Q)=\rho^{\left(S, \mathcal{I}, \mathbf{v}^{\prime}\right)}$, and \mathbf{v}^{\prime} differs from \mathbf{v} only in $\mathbf{v}^{\prime}(X)=Q . \mu \bar{X} \rho$ is the least fixpoint of the functional $\rho^{\mathcal{F}}$.

Relational μ-calculus: Model checking

- A term or a formula with free individual variables x_{1}, \ldots, x_{m} is represented as a BDD and BDD variables x_{1}, \ldots, x_{m}.
- As the variables can appear as successors in the BDDs, substitution is simple matter replacing the variable with a relation.
- The algorithm recursively evaluates the given formula with a case analysis.

Relational μ-calculus: Model checking

Problem: given a relational frame $\mathcal{F}=(S, \mathcal{I})$ and a relational term ρ or a formula φ, what is the denotation of $\rho^{\mathcal{F}}$ or $\varphi^{\mathcal{F}}$.

- Model checking for finite domains is polynomial in the size of the structure.
- Assume binary domains
- BDDs are tuples $\left(\delta, i, \delta_{1}, \delta_{2}\right)$, where δ is the name of the node, i is a variable from the set $\left\{v_{1}, \ldots, v_{n}, x_{1}, \ldots, x_{m}\right\}$ and each δ_{j} is one of the constants 0 or 1 , the name of a relation variable, or the name of another BDD node.

Relational μ-calculus: Model checking

```
function BDDTerm(RelationalTerm }\rho\mathrm{ , Interpreation }\mathcal{I}):=\mathrm{ Bdd
    case }\rho\mathrm{ of
        R\in\mathcal{R}: return \mathcal{I}}(R);/*\mathrm{ pointer to BDD for R*/
        X\in\mathcal{V}: return X; /*name of }\mp@subsup{X}{}{*}
        \lambdax
        \muX\rho:r:= BDDTerm( }\rho,\mathcal{I}\mathrm{ ); return BDDIfp(r,0);
```

function $\operatorname{BDDIfp}\left(\mathrm{BDD} r, \mathrm{BDD} X^{i}\right): \mathrm{BDD}=$
$X^{i+1}:=r\left\{X:=X^{i}\right\} ;$
if $\left(X^{i+1}=X^{i}\right)$ then return X^{i};
else return $\operatorname{BDDIfp}\left(r, X^{i+1}\right)$;

Relational μ-calculus: Model checking

```
function BDDForm (Formula }\varphi\mathrm{ , Interpretation I) : Bdd =
    /*Calculates the BDD of formula }\varphi\mathrm{ in the interpretation I}\mp@subsup{\mathcal{I}}{}{*
    case }\varphi\mathrm{ of
        x\in\mathcal{V}: return Ite( }x,1,0)
```



```
         return 0;
        ( }\mp@subsup{\psi}{1}{}->\mp@subsup{\psi}{2}{2}\mathrm{ ): return BDDImp(BDDForm( }\mp@subsup{\psi}{1}{},\mathcal{I}),\operatorname{BDDForm}(\mp@subsup{\psi}{2}{},\mathcal{I}))
        \existsx\varphi: return BDDExists(x,\operatorname{BDDForm( }\varphi,\mathcal{I}));
```


- The interpretation \mathcal{I} of a relation is a BDD over the variables v_{1}, \ldots, v_{n}.

Bounded Model Checking: Example

We consider a three-bit shift register. We wish to verify $\mathbf{A F}(x=0)$.
The contents of the register function as state variables. The transition relation:

$$
R\left(x, x^{\prime}\right)=\left(x^{\prime}[0]=x[1]\right) \wedge\left(x^{\prime}[1]=x[2]\right) \wedge\left(x^{\prime}[2]=1\right)
$$

In the initial state, all registers contain 1 , as represented by the predicate $I\left(x_{i}\right)=$ $x_{i}[0]=1 \wedge x_{i}[1]=1 \wedge x_{i}[2]=1$.

We identify x_{i} with vector containing a copy of the state varibles. By unrolling the transition relation we get formula

$$
f_{m} \equiv I\left(x_{0}\right) \wedge R\left(x_{0}, x_{1}\right) \wedge R\left(x_{1}, x_{2}\right)
$$

which represents the legal paths $x_{0} x_{1} x_{2}$ of length two of the system.

Bounded Model Checking

- For some cases the BDD-based approach to model checking does not perform very well.
- There are systems for which an exponential BDD is required to represent the system w.r.t. the number of state variables.
- An alternative approach to symbolic model checking is to encode the problem as an instance of propositional satisfiability and use state of the art satisfiability solvers to attack the problem.
- The encoding is possible for finite domains, as translating first-order logic to linear temporal logic is possible

Let \mathcal{M} be a Kripke structure, $I(w)$ the initial predicate and $T(w)$ the terminal predicate.

Each state w is a vector of n propositional variables w_{i}.

The following formula $[[\mathcal{M}]]$ describes the legal maximal paths $w^{0} \ldots w^{k}$ of length k.

$$
[[\mathcal{M}]]=I\left(w^{0}\right) \wedge \bigwedge_{i=1}^{k} R\left(w^{i-1}, w^{i}\right) \wedge\left(T\left(w^{k}\right) \vee \bigvee_{l=0}^{k} R\left(w^{k}, w^{l}\right)\right)
$$

The path represented by $w^{0} \ldots w^{k}$ can represent infinite behaviour if it contains a loop.

Bounded Model Checking: Example

The universal model checking problem is converted to an existential by negating the formula: $\mathbf{E G}(x \neq 0)$. Any witness to $\mathbf{G}(x \neq 0)$ must contain a loop. Thus we require that there is a transition from x_{2} to itself, or to x_{1} or to x_{0}. This transition is defined as

$$
L_{i} \equiv R\left(x_{2}, x_{i}\right)
$$

The constraint imposed by the formula is that $x \neq 0$ at each state. This can be captured by the formula

$$
S_{i} \equiv\left(x_{i}[0]=1\right) \vee\left(x_{i}[1]=1\right) \vee\left(x_{i}[2]=1\right)
$$

Putting this together we get

$$
f_{m} \wedge \bigvee_{i=0}^{2} L_{i} \wedge \bigwedge_{i=0}^{2} S_{i}
$$

This formula is satisfiable iff there is a counterexample of length 2 for the original formula $\mathbf{F}(x=0)$.

Bounded Model Checking: Translation to Propositional Logic

$$
\begin{aligned}
{\left[\left[\left(\varphi \mathbf{U}^{+} \psi\right)\right]\right]_{k}^{i}=} & \bigvee_{j=i+1}^{k}\left([[\psi]]_{k}^{j} \wedge \bigwedge_{m=i+1}^{j-1}[[\varphi]]_{k}^{m}\right) \vee \\
& \bigvee_{l=0}^{k}\left(\bigwedge_{m=i+1}^{k}[[\varphi]]_{k}^{m} \wedge R\left(w^{k}, w^{l}\right) \wedge \bigvee_{j=l}^{i}\left([[\psi]]_{k}^{j} \wedge \bigwedge_{m=l}^{j-1}[[\varphi]]_{k}^{m}\right)\right)
\end{aligned}
$$

The translation as it has been presented here is not very efficient. By introducing translations $\mathbf{G}^{+}, \mathbf{F}^{+}$, etc. it is possible to make a more efficent translation.

Bounded Model Checking: Translation to Propositional Logic

We define $[[\psi]]_{k}^{i}$ recursively on the structure of ψ. In this recursion k is fixed while i depends on the evaluation point. Let $k, i \in \mathbb{N}$ and $\vee_{j=l}^{k} \psi=\perp$ for $l>i$.

- $[[p]]_{k}^{i}=p\left(w^{i}\right)$
- $[\text { [} \perp]_{k}^{i}=\perp$
- $[[(\varphi \rightarrow \psi)]]_{k}^{i}=\left([[\varphi]]_{k}^{i} \rightarrow[[\psi]]_{k}^{i}\right)$

Partial Order Methods: Introduction

- The interleaving semantics for parallel processes causes all independent events to interleave.
- The global state space includes these interleavings.
- Partial order methods aim at only generating the neccessary part of the state space needed for the evaluation of a formula.
- Only representatives of these interleavings are generated.

Bounded Model Checking

Theorem. There exists a maximal path of length k generated by \mathcal{M} which initially validates ψ iff $\left([[\mathcal{M}]]_{k} \wedge[[\psi]]_{k}^{0}\right)$ is propositionally satisfiable.

- Without knowing an upperbound for k, bounded model checking can only be used for falsification and not proving.
- For LTL, the upperbound for k is $|\mathcal{M}| \times 2^{|\psi|}$.
- It is likely that for many cases a better upper bound exists, it is however difficult to compute.

Partial Order Methods: Stuttering Invariance

Stuttering equivalence is the concept which allows us to identify which interleavings are identical and group them into equivalence classes.

- Let $P=\left\{p_{1}, \ldots, p_{k}\right\} \subseteq \mathcal{P}$. Two natural models \mathcal{M} and \mathcal{M}^{\prime} are strongly equivalent w.r.t. P, if they are of the same cardinality and for all $i \geq$ and all $p \in P$, $w_{i} \in \mathcal{I}(p)$ iff $w_{i}^{\prime} \in \mathcal{I}^{\prime}(p)$.
- A point w_{i+1} in \mathcal{M} is stuttering w.r.t. P, if $w_{i} \in \mathcal{I}(p)$ iff $w_{i+1} \in \mathcal{I}(p)$.
- The stutter-free kernel \mathcal{M}^{0} of a model \mathcal{M} is obtained by retaining all non-stuttering states of \mathcal{M}.

Partial Order Methods: Introduction

- The semantics of the concurrency is not changed, but the partial order nature of events is utilized
- The partial order methods will be presented in the contex of elementary Petri nets and Linear Temporal Logic.

Partial Order Methods: Analysis of Elementary Nets

We are given an elementary Petri net N and an LTL-X formula φ, with atomic propositions $P_{\varphi} \subseteq S$.

- Indepependence of two transition t_{1} and t_{2}
- Independent transitions must neither enable or disable each other
- Independent transitions enabled at m must be able to commute
- This definition is too hard to check. We need a syntactic condition.

A subset $T_{m} \subseteq T$ is persistent in a marking m iff for all $t \in T_{m}$ and all firing sequences $t_{0}, t_{1}, \ldots, t_{n}, t$ such that $t_{i} \notin T_{m}$, there exists a stuttering equivalent firing sequence starting with t.

Partial Order Methods: Stuttering Invariance

- $\ln \mathcal{M}^{0}: w<w^{\prime}$ iff $w<w^{\prime}$ in \mathcal{M} or there are stuttering points w_{1}, \ldots, w_{k} such that $w<w_{1}<\cdots<w_{k}<w^{\prime}$ in \mathcal{M}.
- A formula φ is stuttering invariant if for all stuttering equivalent models $\mathcal{M}, \mathcal{M}^{\prime}$, $\mathcal{M}=\varphi$ iff $\mathcal{M}^{\prime} \vDash \varphi$.
- For our reduction to work we can use only stuttering invariant formulae
- Let LTL-X the logic built from propositions $p \in \mathcal{P}$, boolean connectives \perp, \rightarrow and the reflexive unitil operator \mathbf{U}^{*}

Lemma. Any LTL-X formula is stuttering invariant.
Theorem Any LTL formula which is stuttering invariant is expressible in LTL-X.

Partial Order Methods: Analysis of Elementary Nets

Let t_{f} be an enabled transition in m and t a disabled transition.

- $N E C(t, m)=\left\{t^{\prime} \mid p \in t^{\prime} \bullet\right\}$, for some $p \in(\bullet t \backslash m)$.
- $N E C^{*}(t, m)=$ transitive closure of $N E C(t, m)$.
- If t is disabled in m, t cannot fire before some transition in $N E C^{*}(t, m)$ fire.
- A transition is visible for φ if $(\bullet t \cup t \bullet) \cap P_{\varphi} \neq \emptyset$.
- The conflict of t is defined as $C(t)=\left\{t^{\prime} \mid \bullet t^{\prime} \cap \bullet t \neq \emptyset\right\} \cup\{t\}$.

Partial Order Methods: Analysis of Elementary Nets

If T_{m} is persistent at m, we do not need to consider transitions outside T_{m}, as there will be a stuttering equivalent sequence starting with $t \in T_{m}$.

- The previous definition is still not efficient. No way of efficiently computing a minimal persistent set (NP-hard?).
- We approximate using heuristics.

IDEA: We start with $T_{m}=t$. Then we add all transitions which can "interfere" with some transition in T_{m}.

Interfere means either the transition cannot commute with some transition in T_{m} or it enables or disables a transition in T_{m}

Partial Order Methods: Analysis of Elementary Nets

Theorem. For any firing sequence ρ of the net there exists a firing sequence ρ^{\prime} generated only by firing the enabled ready transitions such that ρ and ρ^{\prime} are equivalent w.r.t. all LTL-X safety properties.

- The procedure could be extended to liveness properties by making sure a different set is generated, if a marking is reached again.
- Can at best result in an exponential reduction.
- Worst case complexity cubic in the size of the net. Average example's complexity is linear.

Partial Order Methods: Analysis of Elementary Nets

- The extended conflict of t is $C(t)$ if t is invisible; otherwise it is $C(t)$ and all other visible transitions.
- A dependent set $\operatorname{DEP}\left(t_{f}, m\right)$ of t_{f} is any set of transitions such that for any t in the extended conflict of t_{f}, there exists a set $N E C(t, m) \subseteq D E P\left(t_{f}, m\right)$.
- Transitions which are fired should be transitively closed under dependency.
- $R E A D Y(m)$ is any nonempty set of transitions s.t. $D E P\left(t_{f}, m\right) \subseteq R E A D Y(m)$, if $t_{f} \in R E A D Y(m)$.

