Outline

- Symbolic model checking
- Binary Decision Diagrams
- Model checking CTL
- Relational μ -calculus
- Bounded Model Checking
- Partial Order Methods

Symbolic Model Checking: Example

Let $\mathcal{P} = \{v_1, v_2, v_3\}$. Then the formula $(v_1 \wedge v_2) \vee v_3$ represents the set $\{110, 001, 011, 101, 111\}$, where 0 stands for **false** and 1 for **true** and the a string denotes the valuation for the variables in increasing index order.

Representing the transition relation of the program can be done by a propositional formula over $\mathcal{P} = \{v_1, \ldots, v_m, v'_1, \ldots, v'_m\}$.

Let $R = (v_1 \leftrightarrow \neg v'_1) \land (v_2 \rightarrow v'_2) \land (v_2 \land v_3 \rightarrow v'_3)$ From the state $v = v_1 \land v_2 \land \neg v_3$ the reachable states are characterized by $v' = \neg v'_1 \land v_2$.

The propositional expression representing the set of successors is in terms of primed variables is:

 $\exists \vec{v}(v \wedge R).$

Symbolic Model Checking: Introduction

- Symbolic model checking tries to alleviate the state space explosion problem by using efficient encodings of the state space.
- The state space is encoded using an implicit representation.
- For model checking we then need a symbolic representation of the transition relation and the temporal operators.
- One symbolic encoding is using boolean functions (propositional logic)

Symbolic Model Checking and Partial Order Methods

Chapters 10 – 12

Model Checking

Timo Latvala

Symbolic Model Checking: Binary Decision Diagrams

Any formula can be converted to using only Ite with the Shannon expansion:

$$\varphi \leftrightarrow \operatorname{Ite}(v, \varphi\{v := \top\}, \varphi\{v := \bot\})$$

Example. Let $\varphi = (v_1 \wedge v_2) \rightarrow v_3$. We expand the variables in descending index order. Then the corresponding INF is:

$$\varphi = \operatorname{Ite}(v_3, \varphi_1, \varphi_0)$$

$$\varphi_1 = \operatorname{Ite}(v_2, \varphi_{11}, \top)$$

$$\varphi_0 = \operatorname{Ite}(v_2, \varphi_{01}, \top)$$

$$\varphi_{11} = \operatorname{Ite}(v_1, \top, \top)$$

$$\varphi_{01} = \operatorname{Ite}(v_1, \bot, \top)$$

The expression can be visualized as an expression tree called a *decision tree*.

Symbolic Model Checking: Binary Decision Diagrams

- \bullet No two distinct nodes u and v have the same variable name and low- and high-successor.
- No variable u has identical low- and high-successor, i.e. $low(u) \neq high(u)$.

Symbolic Model Checking: Binary Decision Diagrams

Finding the shortest formula representing a given set is co-NP-hard. Therefore we need efficient methods for manipulating the formulae, which can become very large. *Binary Decision Diagrams* provide such methods.

We define the three-place connective $Ite(\varphi, \psi_T, \psi_F)$ ('if-then-else') in the following way:

$$\mathbf{Ite}(\varphi,\psi_T,\psi_F) \stackrel{def}{=} (\varphi \wedge \psi_T) \vee (\neg \varphi \wedge \psi_F)$$

Any propositional formula can be expressed using Ite and the constants \top, \bot as $\varphi \rightarrow \psi \leftrightarrow \text{Ite}(\varphi, \psi, \top)$.

Symbolic Model Checking: Binary Decision Diagrams

A binary decision diagram (BDD) is a rooted, directed acyclic graph which has the following characteristics.

- There are one or two terminal nodes with zero outdegree labeled 0 and 1.
- Each variable node u has two outgoing edges low(u) and high(u)
- Each variable node u is associated with a variable var(u).
- All paths in the graph respect the given linear ordering $x_1 < x_2 < \cdots < x_n$.

Symbolic Model Checking: Binary Decision Diagrams

Theorem (Canonicity). For any function $f : \mathbb{B}^n \to \mathbb{B}$ there is exactly one BDD u with variable ordering $v_1 < v_2 < \cdots < v_n$ such that $f^u = f(v_1, v_2, \ldots, v_n)$.

Proof: (sketch). The proof proceeds by induction on the number of arguments of f. For n = 0 the two possible boolean functions are true and false. Each of these have a unique BDD representation \top and \bot . Since redundant tests are always removed, a BDD with a variable node must be non-constant. Let $f(v_1, \ldots, v_n, v_{n+1})$ be a function of n + 1 arguments. Define $f_i(x_2, \ldots, x_{n+1}) = f(i, v_2, \ldots, v_{n+1}), i \in \mathbb{B}$. By the induction hypothesis both f_0 and f_1 have unique BDD representations u_0 and u_1 such that $f^{u_0} = f_0$ and $f^{u_1} = f_1$. By Shannon's expansion we have that:

$$f(v_1, v_2, \dots, v_{n+1}) =$$
Ite (v_1, f_1, f_2) .

A simple case analysis ($u_0 = u_1$ and $u_0 \neq u_1$) shows that this resultant BDD is unique.

Binary Decision Diagrams: Algorithms and Implementation

function PL2BDD (Formula φ) : (Nodeset, Bdd) = Nodeset $table := \{\}; /*Table of BDD nodes*/$ Bdd max := 1;Bdd $result := BDD(\varphi, 1);$ return (table, result) function BDD(Formula φ , Bddvar i) : = Bdd if i > n then return $eval(\varphi) /*\varphi$; is constant*/ else $\delta_1 := BDD(\varphi\{v_i := \bot\}, i + 1);$ $\delta_2 := BDD(\varphi\{v_i := T\}, i + 1);$ if $\delta_1 = \delta_2$ then return δ_1 ; else if $\exists \delta : (\delta, i, \delta_1, \delta_2) \in table$ then return δ ; else $max := max + 1; table := table \cup \{(max, i, \delta_1, \delta_2)\};$ return max;

Symbolic Model Checking: Binary Decision Diagrams

- We identify a BDD by its root node u.
- The true branch of a node is denoted high(u) and the false branch is denoted low(u).
- A BDD φ^u defines a boolean function in the following way.

 $\begin{array}{lll} \varphi^0 &=& 0 \\ \varphi^1 &=& 1 \\ \varphi^u &=& \operatorname{Ite}(\operatorname{var}(u), \varphi^{\operatorname{high}(u)}, \varphi^{\operatorname{low}(u)}), u \text{ is a variable node.} \end{array}$

Binary Decision Diagrams: Algorithms and Implementation

- The set of BDD nodes is implemented as a hash table.
- Let $\delta = \text{Ite}(v, \delta_1, \delta_2)$, then the hash table maps triples (v, δ_1, δ_2) to δ .
- Each BDD is identified by its variable and two children. A reduced BDD can now be created by recursively performing the Shannon expansion on the formula.

Binary Decision Diagrams: Algorithms and Implementation
function BDDImp (Bdd φ , Bdd ψ) : Bdd =
if $\varphi = 0$ or $\psi = 1$ then return 1;
else if $arphi=1$ return $\psi;$
else if $\psi = 0$ and $(\varphi, i, \varphi_1, \varphi_2) \in table_{\varphi}$
then return new_node $(i, BDDImp(arphi_1, 0), BDDImp(arphi_2, 0));$
else $/^{st}(arphi,i,arphi_1,arphi_2)$ and $(\psi,j,\psi_1,\psi_2)^{st}/$
if $(i = j)$ then
return new_node $(i, BDDImp(arphi_1, \psi_1), BDDImp(arphi_2, \psi_2));$
else if $(i < j)$ then
return new_node $(i, BDDImp(arphi_1, \psi), BDDImp(arphi_2, \psi));$
else if $(i > j)$ then
return new_node $(i, BDDImp(arphi, \psi_1), BDDImp(arphi, \psi_2));$
function $new_node(Bddvar\;i,Bdd\;\delta_1,Bdd\;\delta_2):=Bdd$
if $\delta_1 = \delta_2$ then return δ_1 ;
else if $\exists \delta$: $(\delta, i, \delta_1, \delta_2) \in table$ then return δ ;
else $max := max + 1$; $table := table \cup \{(max, i, \delta_1, \delta_2)\}$; return max ;

Symbolic Model Checking for CTL

- We describe algorithms for computing a BDD representation $\varphi^{\mathcal{F}}$ of the set states where the formula φ holds.
- The system is described by variables $\vec{v} = \{v_1, \dots, v_n\}$. The transition relation R is over the variables $\{v_1, \dots, v_n, v'_1, \dots, v'_n\}$.
- For each $p \in \mathcal{P}$ a BDD is given which represents the set $\mathcal{I}(p)$.
- Computing the BDDs for the propositional case is easy. We simply use the algorithms described the in the previous section.
- How do we compute $A(\varphi U^+ \psi)$ and $E(\varphi U^+ \psi)$?

Binary Decision Diagrams: Algorithms and Implementation

- The size of the constructed BDD can greatly depend on the ordering of the variables.
 Example (v₁ ↔ v₃) ∧ (v₂ ↔ v₄).
- A good ordering can result in a BDD linear w.r.t the number of variables while a bad ordering may result in an exponential BDD.
- Finding the optimal ordering is an NP-hard problem.
- There provably exists boolean expression which always result in an exponential BDD, irrespectively of the variable ordering.

Binary Decision Diagrams: Algorithms and Implementation

- Any boolean operation can be implemented linear time w.r.t. input BDDs
- Most BDD-packages use separate algorithms for each operator for increased efficiency.
- For model checking we still need existential quantification.

 $\begin{array}{l} \text{function BDDExists (Bdd φ, Vars \vec{v}) : Bdd = \\ & \text{if $\varphi = \in \{0, 1\}$ then return φ;} \\ & \text{else } /^{*}(\varphi, i, \varphi_{1}, \varphi_{2}) \in table^{*} / \\ & \delta_{1} = \text{BDDExists}(\varphi_{1}, \vec{v}); \ \delta_{2} = \text{BDDExists}(\varphi_{2}, \vec{v}); \\ & \text{if $i \in \vec{v}$ then return BDDApply}(\lor, \delta_{1}, \delta_{2}); \\ & \text{else return new_node}(i, \delta_{1}, \delta_{2}); \end{array}$

Relational μ -calculus: Introduction

- The relational μ -calculus is rich logical language. It can be seen as a first order predicate logic with a recursion operator.
- The symbolic techniques presented previously can also be extended for model checking this expressive logic.

Relational μ -calculus: Syntax

Assume that the symbols (,), \bot , \rightarrow , =, \exists , μ , λ are not in the signature . A well-formed formula has the following syntax:

- \perp , $(arphi
 ightarrow \psi)$, where arphi and ψ are well-formed formulas,
- $x_1 = x_2$, where x_1 and x_2 are individual variables of the same type,
- $\exists x \ \varphi$, where φ is a well-formed formula, and x is an individual variable, or
- ρ x₁...x_n, where ρ is a relation term of type (D₁,..., D_n), and x_i is an individual
 variable of type D_i.

Symbolic Model Checking for CTL

Essentially, we only convert the previously presented algorithm to symbolic terms.

 $E(\psi_2 U^+ \psi_1)$: We must compute the least fixpoint of the set $\{w \mid \exists w'(w \prec w' \land (w' \in (\psi_1^{\mathcal{F}} \cup \psi_2^{\mathcal{F}} \cap E))\}$, where E is an intermediate result of the iteration

 $\begin{array}{l} \mathbf{A}(\psi_2\mathbf{U}^+\psi_1) \text{: The greatest least of the set} \\ \{w \mid \forall w'(w \prec w' \rightarrow (w' \in (\psi_1^{\mathcal{F}} \cup \psi_2^{\mathcal{F}} \cap E))\} \text{ must be computed.} \end{array}$

For $\mathbf{E}(\psi_2 \mathbf{U}^+ \psi_1)$: $E_0(w') = \emptyset$ $E_{i+1}(w) = E_i(w) \lor \exists w'(R(w, w') \land (\psi_1^{\mathcal{F}}(w') \lor (\psi_2^{\mathcal{F}}(w') \land E_i(w')))$, where $\psi_1^{\mathcal{F}}, \psi_2^{\mathcal{F}}$ and E are BDDs.

Fixpoint calculations with BDDs are easy, as equality checking is a constant time operation.

Relational μ -calculus: Preliminaries

- A collection of disjoint sets with a collection of relations over the sets is called a (typed) *structure*.
- A pair Σ = (D, R) is called a signature, where D is a finite set of *domain names* and R is is a set of *relation symbols*.
- Each relation symbol has an associated type τ .
- An *interpretation* \mathcal{I} assign a structure S to signature Σ . Formally, $\mathcal{I} : \Sigma \to S$.
- For relation a R with type $\tau(R) = (D_1, \ldots, D_n)$ the interpretation is $\mathcal{I}(R) \subseteq \mathcal{I}(D_1) \times \cdots \times \mathcal{I}(D_n)$.

Relational μ -calculus: Models and Semantics

A relation model $\mathcal{M} = (S, \mathcal{I}, \mathbf{v})$ for a signature Σ consists of a structure S, an interpretation \mathcal{I} and variable valuation \mathbf{v} . The semantics are as follows:

- $x^{\mathcal{M}} = \mathbf{v}(x)$, if x is an individual variable,
- $\perp^{\mathcal{M}} = false$,
- $(\varphi \to \psi)^{\mathcal{M}} =$ true iff $\varphi^{\mathcal{M}} =$ false or $\psi^{\mathcal{M}} =$ true.
- $(x_1 = x_2)^{\mathcal{M}} =$ true iff $x_1^{\mathcal{M}} = x_2^{\mathcal{M}}$,
- $(\exists x \ \varphi)^{\mathcal{M}} =$ true iff $\varphi^{(S,\mathcal{I},\mathbf{v}')} =$ true and \mathbf{v}' differs from \mathbf{v} at most in x.

Relational μ -calculus: Expressivity

- The expressive power of the relational µ-calculus is between first-order logic and second order logic.
- With the μ -recursion operator all recursive functions of arithmetic can be defined. This means that on infinite domains the relational μ -calculus has the expressive power of Turing machines.
- The addition-relation on natural numbers can be defined in the following way.
- \bullet Let Z be the constant zero and S the successor relation. The addition-relation is defined by

$$\mu X(\lambda xyz(Zx \land y = z \lor \exists uv(Sux \land Svz \land Xuyv)))$$

Relational μ -calculus: Syntax

The relation terms have their own syntax. Very complex relation can be formed using λ -abstraction or μ -recursion. A relation term of type (D_1, \ldots, D_n) is

- a relation symbol R or a relation variable X of type (D_1, \ldots, D_n) ,
- $\lambda x_1 \dots x_n \varphi$, where φ is a well-formed formula and each x_i is an individual variable of type D_i , or
- $\mu X \rho$, where X is a relation variable of type (D_1, \ldots, D_n) , and ρ a relation term which is positive in X.

A relational term ρ is positive in X if every occurrence of X is under an even number of negation signs.

Relational μ -calculus: Models and Semantics

- $(\rho x_1 \dots x_n)^{\mathcal{M}} =$ true iff $(x_1^{\mathcal{M}}, \dots, x_n^{\mathcal{M}}) \in \rho^{\mathcal{M}},$
- $R^{\mathcal{M}} = \mathcal{I}(R)$, if R is a relation symbol, i.e. the name is connected to the preselected interpretation,
- $X^{\mathcal{M}} = \mathbf{v}(X)$, if X is a relation variable,
- $(\lambda x_1 \dots x_n \varphi)^{\mathcal{M}} = \{(d_1, \dots, d_n) \mid \varphi^{(S, \mathcal{I}, \mathbf{v}')} = \text{true where } \mathbf{v}' \text{ differs form } \mathbf{v} \text{ only in the assignment of } d_i \text{ to } x_i, \text{ i.e. } (\lambda x_1 \dots x_n \varphi)^{\mathcal{M}} \text{ is the relation consisting of all tuples of objects for which } \varphi \text{ is true, and}$
- $(\mu X \rho)^{\mathcal{M}} = \cap \{Q \mid \rho^{\mathcal{F}}(Q) \subseteq Q\}$, where $\rho^{\mathcal{F}}(Q) = \rho^{(S,\mathcal{I},\mathbf{v}')}$, and \mathbf{v}' differs from \mathbf{v} only in $\mathbf{v}'(X) = Q$. $\mu X \rho$ is the least fixpoint of the functional $\rho^{\mathcal{F}}$.

Relational μ -calculus: Model checking

- A term or a formula with free individual variables x_1, \ldots, x_m is represented as a BDD and BDD variables x_1, \ldots, x_m .
- As the variables can appear as successors in the BDDs, substitution is simple matter replacing the variable with a relation.
- The algorithm recursively evaluates the given formula with a case analysis.

Relational μ -calculus: Model checking

```
function BDDTerm(RelationalTerm \rho, Interpretaion \mathcal{I}) := Bdd

case \rho of

R \in \mathcal{R}: return \mathcal{I}(R); /*pointer to BDD for R^*/

X \in \mathcal{V}: return X; /*name of X^*/

\lambda x_1 \dots x_n \varphi : return BDDForm(\varphi, \mathcal{I}))\{v_1 := x_1\} \cdots \{v_n := x_n\};

\mu X \rho : r :=BDDTerm(\rho, \mathcal{I}); return BDDIfp(r, 0);

function BDDIfp(BDD r, BDD X^i) : BDD =

X^{i+1} := r\{X := X^i\};

if (X^{i+1} = X^i) then return X^i;

else return BDDIfp(r, X^{i+1});
```

Relational μ -calculus: Model checking

Problem: given a relational frame $\mathcal{F} = (S, \mathcal{I})$ and a relational term ρ or a formula φ , what is the denotation of $\rho^{\mathcal{F}}$ or $\varphi^{\mathcal{F}}$.

- Model checking for finite domains is polynomial in the size of the structure.
- Assume binary domains
- BDDs are tuples $(\delta, i, \delta_1, \delta_2)$, where δ is the name of the node, i is a variable from the set $\{v_1, \ldots, v_n, x_1, \ldots, x_m\}$ and each δ_j is one of the constants 0 or 1, the name of a relation variable, or the name of another BDD node.
- The interpretation $\mathcal I$ of a relation is a BDD over the variables v_1,\ldots,v_n .

Relational μ -calculus: Model checking

function BDDForm (Formula φ , Interpretation \mathcal{I}) : Bdd = /*Calculates the BDD of formula φ in the interpretation $\mathcal{I}^*/$ case φ of $x \in \mathcal{V}$: return Ite(x, 1, 0); $(x_1 = x_2)$: return Ite $(x_1, \text{Ite}(x_2, 1, 0), \text{Ite}(x_2, 0, 1))$; \perp return 0; $(\psi_1 \rightarrow \psi_2)$: return BDDImp(BDDForm (ψ_1, \mathcal{I}) , BDDForm (ψ_2, \mathcal{I})); $\exists x \ \varphi$: return BDDExists $(x, \text{BDDForm}(\varphi, \mathcal{I}))$; $\rho x_1 \dots x_n$: return BDDTerm $(\rho, \mathcal{I})\{v_1 := x_1\} \dots \{v_n := x_n\}$;

Bounded Model Checking: Example

We consider a three-bit shift register. We wish to verify AF(x = 0). The contents of the register function as state variables. The transition relation:

$$R(x, x') = (x'[0] = x[1]) \land (x'[1] = x[2]) \land (x'[2] = 1)$$

In the initial state, all registers contain 1, as represented by the predicate $I(x_i) = x_i[0] = 1 \land x_i[1] = 1 \land x_i[2] = 1$.

We identify x_i with vector containing a copy of the state varibles. By unrolling the transition relation we get formula

$$f_m \equiv I(x_0) \land R(x_0, x_1) \land R(x_1, x_2)$$

which represents the legal paths $x_0x_1x_2$ of length two of the system.

Bounded Model Checking: Translation to Propositional Logic

Let \mathcal{M} be a Kripke structure, I(w) the initial predicate and T(w) the terminal predicate.

Each state w is a vector of n propositional variables w_i .

The following formula $[[\mathcal{M}]]$ describes the legal maximal paths $w^0 \dots w^k$ of length k.

$$[[\mathcal{M}]] = I(w^0) \land \bigwedge_{i=1}^k R(w^{i-1}, w^i) \land \left(T(w^k) \lor \bigvee_{l=0}^k R(w^k, w^l)\right)$$

The path represented by $w^0\ldots w^k$ can represent infinite behaviour if it contains a loop.

Bounded Model Checking

- For some cases the BDD-based approach to model checking does not perform very well.
- There are systems for which an exponential BDD is required to represent the system w.r.t. the number of state variables.
- An alternative approach to symbolic model checking is to encode the problem as an instance of propositional satisfiability and use state of the art satisfiability solvers to attack the problem.
- The encoding is possible for finite domains, as translating first-order logic to linear temporal logic is possible

Bounded Model Checking: Example

The universal model checking problem is converted to an existential by negating the formula: $EG(x \neq 0)$. Any witness to $G(x \neq 0)$ must contain a loop. Thus we require that there is a transition from x_2 to itself, or to x_1 or to x_0 . This transition is defined as

$$L_i \equiv R(x_2, x_i)$$

The constraint imposed by the formula is that $x\neq 0$ at each state. This can be captured by the formula

$$S_i \equiv (x_i[0] = 1) \lor (x_i[1] = 1) \lor (x_i[2] = 1)$$

Putting this together we get

$$f_m \wedge \bigvee_{i=0}^2 L_i \wedge \bigwedge_{i=0}^2 S_i$$

This formula is satisfiable iff there is a counterexample of length 2 for the original formula F(x = 0).

Bounded Model Checking: Translation to Propositional Logic

$$[[(\varphi \mathbf{U}^{+}\psi)]]_{k}^{i} = \bigvee_{\substack{j=i+1\\ \bigvee\\ k \\ l=0}}^{k} \left([[\psi]]_{k}^{j} \wedge \bigwedge_{\substack{m=i+1\\ m=i+1}}^{j-1} [[\varphi]]_{k}^{m} \right) \vee$$

The translation as it has been presented here is not very efficient. By introducing translations ${\bf G^+,F^+}$, etc. it is possible to make a more efficient translation.

Partial Order Methods: Introduction

- The interleaving semantics for parallel processes causes all independent events to interleave.
- The global state space includes these interleavings.
- Partial order methods aim at only generating the neccessary part of the state space needed for the evaluation of a formula.
- Only representatives of these interleavings are generated.

Bounded Model Checking: Translation to Propositional Logic

We define $[[\psi]]_k^i$ recursively on the structure of ψ . In this recursion k is fixed while i depends on the evaluation point. Let $k, i \in \mathbb{N}$ and $\lor_{i=l}^k \psi = \bot$ for l > i.

- $[[p]]_k^i = p(w^i)$
- $[[\perp]]_k^i = \perp$
- $[[(\varphi \to \psi)]]_k^i = ([[\varphi]]_k^i \to [[\psi]]_k^i)$

Bounded Model Checking

Theorem. There exists a maximal path of length k generated by \mathcal{M} which initially validates ψ iff $([[\mathcal{M}]]_k \wedge [[\psi]]_k^0)$ is propositionally satisfiable.

- Without knowing an upperbound for k, bounded model checking can only be used for falsification and not proving.
- For LTL, the upperbound for k is $|\mathcal{M}| \times 2^{|\psi|}$.
- It is likely that for many cases a better upper bound exists, it is however difficult to compute.

Partial Order Methods: Stuttering Invariance

Stuttering equivalence is the concept which allows us to identify which interleavings are identical and group them into equivalence classes.

- Let $P = \{p_1, \ldots, p_k\} \subseteq \mathcal{P}$. Two natural models \mathcal{M} and \mathcal{M}' are strongly equivalent w.r.t. P, if they are of the same cardinality and for all $i \geq$ and all $p \in P$, $w_i \in \mathcal{I}(p)$ iff $w'_i \in \mathcal{I}'(p)$.
- A point w_{i+1} in \mathcal{M} is stuttering w.r.t. P, if $w_i \in \mathcal{I}(p)$ iff $w_{i+1} \in \mathcal{I}(p)$.
- The stutter-free kernel \mathcal{M}^0 of a model \mathcal{M} is obtained by retaining all non-stuttering states of \mathcal{M} .

Partial Order Methods: Analysis of Elementary Nets

We are given an elementary Petri net N and an **LTL-X** formula φ , with atomic propositions $P_{\varphi} \subseteq S$.

- Independence of two transition t_1 and t_2
 - Independent transitions must neither enable or disable each other
 - Independent transitions enabled at m must be able to commute
- This definition is too hard to check. We need a syntactic condition.

A subset $T_m \subseteq T$ is *persistent* in a marking m iff for all $t \in T_m$ and all firing sequences t_0, t_1, \ldots, t_n, t such that $t_i \notin T_m$, there exists a stuttering equivalent firing sequence starting with t.

Partial Order Methods: Introduction

- The semantics of the concurrency is not changed, but the partial order nature of events is utilized.
- The partial order methods will be presented in the contex of elementary Petri nets and Linear Temporal Logic.

Partial Order Methods: Stuttering Invariance

- In \mathcal{M}^0 : w < w' iff w < w' in \mathcal{M} or there are stuttering points w_1, \ldots, w_k such that $w < w_1 < \cdots < w_k < w'$ in \mathcal{M} .
- A formula φ is *stuttering invariant* if for all stuttering equivalent models $\mathcal{M}, \mathcal{M}', \mathcal{M} \models \varphi$ iff $\mathcal{M}' \models \varphi$.
- For our reduction to work we can use only stuttering invariant formulae
- Let LTL-X the logic built from propositions $p \in \mathcal{P}$, boolean connectives \bot, \to and the reflexive unitil operator U^{*}.

Lemma. Any LTL-X formula is stuttering invariant.

Theorem Any LTL formula which is stuttering invariant is expressible in LTL-X.

Partial Order Methods: Analysis of Elementary Nets

Let t_f be an enabled transition in m and t a disabled transition.

- $NEC(t,m) = \{t' \mid p \in t' \bullet\}$, for some $p \in (\bullet t \setminus m)$.
- $NEC^*(t,m) = \text{transitive closure of } NEC(t,m).$
- If t is disabled in m, t cannot fire before some transition in $NEC^*(t,m)$ fire.
- A transition is visible for φ if $(\bullet t \cup t \bullet) \cap P_{\varphi} \neq \emptyset$.
- The conflict of t is defined as $C(t) = \{t' \mid \bullet t' \cap \bullet t \neq \emptyset\} \cup \{t\}.$

Partial Order Methods: Analysis of Elementary Nets

Theorem. For any firing sequence ρ of the net there exists a firing sequence ρ' generated only by firing the enabled ready transitions such that ρ and ρ' are equivalent w.r.t. all **LTL-X** safety properties.

- The procedure could be extended to liveness properties by making sure a different set is generated, if a marking is reached again.
- Can at best result in an exponential reduction.
- Worst case complexity cubic in the size of the net. Average example's complexity is linear.

Partial Order Methods: Analysis of Elementary Nets

If T_m is persistent at m, we do not need to consider transitions outside T_m , as there will be a stuttering equivalent sequence starting with $t \in T_m$.

- The previous definition is still not efficient. No way of efficiently computing a minimal persistent set (NP-hard?).
- We approximate using heuristics.

IDEA: We start with $T_m = t$. Then we add all transitions which can "interfere" with some transition in T_m .

Interfere means either the transition cannot commute with some transition in ${\cal T}_m$ or it enables or disables a transition in ${\cal T}_m$

Partial Order Methods: Analysis of Elementary Nets

- The extended conflict of t is C(t) if t is invisible; otherwise it is C(t) and all other visible transitions.
- A dependent set DEP(t_f, m) of t_f is any set of transitions such that for any t in the extended conflict of t_f, there exists a set NEC(t, m) ⊆ DEP(t_f, m).
- Transitions which are fired should be transitively closed under dependency.
- READY(m) is any nonempty set of transitions s.t. DEP(t_f, m) ⊆ READY(m), if t_f ∈ READY(m).