|Outline

e Symbolic model checking

Binary Decision Diagrams

Model checking CTL

Relational p-calculus

Bounded Model Checking

Partial Order Methods

Symbolic Model Checking and Partial Order Methods
Chapters 10 — 12
Model Checking

Timo Latvala

‘Symbolic Model Checking: Example

Let P = {v1,vp,v3}. Then the formula (v1 A vp) V v3 represents the set
{110,001,011,101,111}, where 0 stands for false and 1 for true and the a string
denotes the valuation for the variables in increasing index order.

Representing the transition relation of the program can be done by a propositional formula
over P = {v1,...,um,v],..., v}

Let R = (v1 < —w}) A (v — v5) A (v2 A vz — v5) From the state v =
v1 A vp A w3 the reachable states are characterized by v/ = =} A vo.

The propositional expression representing the set of successors is in terms of primed variables
is:

37(v A R).

Symbolic Model Checking: Introduction

e Symbolic model checking tries to alleviate the state space explosion problem by using
efficient encodings of the state space.

e The state space is encoded using an implicit representation.

e For model checking we then need a symbolic representation of the transition relation
and the temporal operators.

e One symbolic encoding is using boolean functions (propositional logic)

Symbolic Model Checking: Binary Decision Diagrams

Any formula can be converted to using only Ite with the Shannon expansion:

o — Ite(v,p{v =T} p{v:=1})

Example. Let ¢ = (v1 A vp) — v3. We expand the variables in descending index
order. Then the corresponding INF is:

¢ = Ite(vs, 1, ¢0)
p1 = Ite(vz, 11, T)
wo = Ite(vo, o1, T)

p11 = Ite(vy, T, T)
vo1 = Ite(vy, L, T)

The expression can be visualized as an expression tree called a decision tree.

Symbolic Model Checking: Binary Decision Diagrams

Finding the shortest formula representing a given set is co-NP-hard. Therefore we need
efficient methods for manipulating the formulae, which can become very large. Binary

Decision Diagrams provide such methods.
We define the three-place connective Ite(¢, Y1,) ('if-then-else’) in the following way:

Tte(p, ¥, ¥r) 2 (o A) V (mp Atpp)

Any propositional formula can be expressed using Ite and the constants T, L as
o — P < Ite(p, 9, T).

Symbolic Model Checking: Binary Decision Diagrams

e No two distinct nodes u and v have the same variable name and low- and high-

SUCCessor.

o No variable u has identical low- and high-successor, i.e. low(u) 7%= high(u).

Symbolic Model Checking: Binary Decision Diagrams

A binary decision diagram (BDD) is a rooted, directed acyclic graph which has the following
characteristics.

There are one or two terminal nodes with zero outdegree labeled O and 1.

Each variable node u has two outgoing edges low (w) and high(u)

Each variable node u is associated with a variable var(u).

All paths in the graph respect the given linear ordering 1 < o < - -+ < xp.

‘Symbolic Model Checking: Binary Decision Diagrams ‘

Theorem (Canonicity). For any function f : B™ — B there is exactly one BDD u
with variable ordering v1 < v2 < -+ < vy, such that f% = f(v1,v2,...,vn).

Proof: (sketch). The proof proceeds by induction on the number of arguments of f.
For n = 0 the two possible boolean functions are true and false. Each of these have a
unique BDD representation T and _L. Since redundant tests are always removed, a BDD
with a variable node must be non-constant. Let f(v1,...,vn,v,41) be a function of
n + 1 arguments. Define f;i(x2,...,2,41) = f(4,v2,...,v,41),% € B. By the
induction hypothesis both fg and fq have unique BDD representations ug and wq such
that f¥0 = fg and f%1 = f1. By Shannon's expansion we have that:

f(vlaUQ)' .. 7vn+1) = Ite(vlafl)f2)-

A simple case analysis (ug = w1 and ug 7 u1) shows that this resultant BDD is unique.

Symbolic Model Checking: Binary Decision Diagrams

e We identify a BDD by its root node w.
e The true branch of a node is denoted high(u) and the false branch is denoted low (u).

A BDD " defines a boolean function in the following way.

W =0
et =1

o = Tte(var(w), "MW Hlow(w)y 4 s a variable node.

Binary Decision Diagrams: Algorithms and Implementation

function PL2BDD (Formula ¢) : (Nodeset, Bdd) =
Nodeset table := {}; /*Table of BDD nodes*/
Bdd mar := 1;
Bdd result := BDD(¢p, 1);
return (table, result)
function BDD(Formula ¢, Bddvar) : = Bdd
if i > n then return eval(p) /*p; is constant*/
else 67 := BDD(p{v; := 1},i 4+ 1);
§> := BDD(¢{v; := T}t + 1);
if 61 = 05 then return §1;
else if 35 : (4,4,01,92) € table then return J;
else maz := max + 1; table := table U {(mazx,i,01,02)};
return max,

Binary Decision Diagrams: Algorithms and Implementation

e The set of BDD nodes is implemented as a hash table.

o Let § = Ite(v, 81, 02), then the hash table maps triples (v, d1,52) to .

e Each BDD is identified by its variable and two children. A reduced BDD can now be
created by recursively performing the Shannon expansion on the formula.

Binary Decision Diagrams: Algorithms and Implementation

function BDDImp (Bdd ¢, Bdd ¢) : Bdd =

function new_node(Bddvar i, Bdd §1, Bdd §5) : = Bdd

if ¢ = 0 or ¢y = 1 then return 1;
else if ¢ = 1 return v;
else if » = 0 and (¢, %, 1, p2) € tabley
then return new_node(i, BDDImp(p1,0), BDDIMp(ps, 0));
else /*(¢, 1,1, 92) and (¥, j,1,1%2)*/
if (i = 5) then
return new node(i, BDDIMp(¢p1, 1), BDDIMp(pso,¥s));
else if (¢ < j) then
return new_node(z, BDDImp(p1,v), BDDIMp(po,v));
else if (¢ > j) then
return new_node(i, BDDImMp(p, 1), BDDIMp(p, ¥2));

if 51 = J5 then return 67;
else if 36 : (8,1,81,05) € table then return §;
else maz ‘= mazx + 1; table := table U {(mazx,1,51,02)}; return max;

Binary Decision Diagrams: Algorithms and Implementation

The size of the constructed BDD can greatly depend on the ordering of the variables.
Example (v1 <> v3) A (vp <> vg).

A good ordering can result in a BDD linear w.r.t the number of variables while a bad

ordering may result in an exponential BDD.

Finding the optimal ordering is an NP-hard problem.

There provably exists boolean expression which always result in an exponential BDD,

irrespectively of the variable ordering.

Symbolic Model Checking for CTL

We describe algorithms for computing a BDD representation gpf of the set states
where the formula ¢ holds.

The system is described by variables @ = {v1,...,vn}. The transition relation R

is over the variables {v1,...,vn, v}, ..., v}

For each p € P a BDD s given which represents the set Z(p).

Computing the BDDs for the propositional case is easy. We simply use the algorithms
described the in the previous section.

How do we compute A (pUT4) and E(oU)?

Binary Decision Diagrams: Algorithms and Implementation

Any boolean operation can be implemented linear time w.r.t. input BDDs

o Most BDD-packages use separate algorithms for each operator for increased efficiency.

e For model checking we still need existential quantification.

function BDDExists (Bdd ¢, Vars ¥) : Bdd =

if o =€ {0, 1} then return y;

else /*(p,1,p1,p2) € table*/
51 = BDDEXxists(p1,7); 6o = BDDEXists(p», 9);
if - € ¥ then return BDDApply(V, 1, d2);
else return new node(%, 1, 62);

Relational p-calculus: Introduction

e The relational p-calculus is rich logical language. It can be seen as a first order

predicate logic with a recursion operator.

e The symbolic techniques presented previously can also be extended for model checking
this expressive logic.

'Symbolic Model Checking for CTL

Essentially, we only convert the previously presented algorithm to symbolic terms.

E(yoUT1)1): We must compute the least fixpoint of the the set
{w | Fw'(w < w' A (W € (w{: U wg— N E))}, where E is an intermediate result of
the iteration

A (o Ut eh1): The greatest least of the set
{w | Vw'(w < w' — (w' € (d){ U ngﬂ E))} must be computed.

For E(yoUt41):

Eo('w/) == 0

Eiy1(w) = Ej(w) V 3w (R(w, w') A (¥ (w') v (4 (w') A E;(w'))), where
Y7, 4¢3 and E are BDDs.

Fixpoint calculations with BDDs are easy, as equality checking is a constant time operation.

Relational u-calculus: Syntax

Assume that the symbols (,), L, —, =, 3, i, A are not in the signature . A well-formed
formula has the following syntax:

1, (¢ — 1), where © and 1) are well-formed formulas,

® 11 = xo, where x1 and x5 are individual variables of the same type,

dz ¢, where ¢ is a well-formed formula, and z is an individual variable, or

® px1...xTn, where pis a relation term of type (D1, ..., Dy), and x; is an individual
variable of type D;.

‘Relational p-calculus: Preliminaries

e A collection of disjoint sets with a collection of relations over the sets is called a
(typed) structure.

A pair = = (D, R) is called a signature, where D is a finite set of domain names
and R is is a set of relation symbols.

Each relation symbol has an associated type 7.

An interpretation T assign a structure S' to signature >. Formally, Z : >~ — S.

For relation a R with type 7(R) = (D1q,..., Dn) the interpretation is Z(R) C
Z(D1) X -+ X I(Dy).

Relational p-calculus: Models and Semantics

A relation model M = (S, Z, V) for a signature 3 consists of a structure S, an inter-
pretation Z and variable valuation v. The semantics are as follows:

M= v(x), if z is an individual variable,

o 1M = false,

(¢ —)M = true iff @M = false or M = true.

(z1 = .TQ)M = true iff ac“l\/‘ = xéw

3z go)M = true iff QO(S’I’V/) = true and v’ differs from v at most in .

Relational u-calculus: Syntax

The relation terms have their own syntax. Very complex relation can be formed using
A-abstraction or u-recursion. A relation term of type (D1,...,Dy) is

e a relation symbol R or a relation variable X of type (D1,...,Dp),

® A\xq...xn i, where @ is a well-formed formula and each x; is an individual variable
of type D;, or

o 11X p, where X is a relation variable of type (D1, ..., Dy), and p a relation term
which is positive in X.

A relational term p is positive in X if every occurrence of X is under an even number of
negation signs.

Relational u-calculus: Expressivity

e The expressive power of the relational p-calculus is between first-order logic and second
order logic.

o With the p-recursion operator all recursive functions of arithmetic can be defined.
This means that on infinite domains the relational p-calculus has the expressive power
of Turing machines.

e The addition-relation on natural numbers can be defined in the following way.
e Let Z be the constant zero and S the successor relation. The addition-relation is

defined by
puX (Azyz(Zz Ny = zV Juv(Suzx A Svz A Xuyv)))

‘ Relational p-calculus: Models and Semantics
e (pz1...2p)M = trueiff (x{\/l, My e pM,

e RM = Z(R), if R is a relation symbol, i.e. the name is connected to the preselected
interpretation,

o XM= v(X), if X is a relation variable,

o (\z1...zn)M = {(d1,...,dn) | oS8TV = true where v/ differs form v
only in the assignment of d; to x;, i.e. (Ax7 .. .:cngo)M is the relation consisting of
all tuples of objects for which ¢ is true, and

o (WXPM = [Q | PF(Q) C Q. where pF(Q) = p(STY), and V! differs
from v only in v/(X) = Q. uXp is the least fixpoint of the functional p7 .

Relational p-calculus: Model checking

e A term or a formula with free individual variables x1, ..., zm is represented as a
BDD and BDD variables 1, ..., zm.

o As the variables can appear as successors in the BDDs, substitution is simple matter

replacing the variable with a relation.

e The algorithm recursively evaluates the given formula with a case analysis.

Relational p-calculus: Model checking

Problem: given a relational frame F = (S,Z) and a relational term p or a formula ¢,
what is the denotation of p]'- or ga}-.

o Model checking for finite domains is polynomial in the size of the structure.
e Assume binary domains

e BDDs are tuples (8,4,01,85), where § is the name of the node, i is a variable from
the set {vy,...,vn,®1,...,Zm} and each 4 is one of the constants O or 1, the
name of a relation variable, or the name of another BDD node.

e The interpretation Z of a relation is a BDD over the variables v1, ..., vp.

Relational p-calculus: Model checking

function BDDTerm(RelationalTerm p, Interpreation Z) : = Bdd
case p of
R € R: return Z(R); /*pointer to BDD for R*/
X € V: return X; /*name of X*/
Az1...xpe : return BDDForm(p,Z7)){v1 i=z1} - {vn ;= zn};
uXp :r :=BDDTerm(p,T); return BDDIfp(r, 0);

function BDDIfp(BDD r, BDD X?) : BDD =
Xl = r{X = X'},
if (X*t1 = X7) then return X*;
else return BDDIfp(r, Xi11);

Relational p-calculus: Model checking

function BDDForm (Formula ¢, Interpretation Z) : Bdd =

/*Calculates the BDD of formula ¢ in the interpretation Z*/

case ¢ of
x € V : return Ite(zx, 1, 0);
(z1 = z2) : return Ite(xq, Ite(zo, 1,0),Ite(z5,0,1)) ;
1 return O;
(11 — 1) : return BDDImp(BDDForm()1,Z), BDDForm(%5,7));
3z ¢ : return BDDExists(x,BDDForm(p,Z));
pTq ... Ty . return BDDTerm(p, 2){vy ;= x1} - - {vn = zn};

Bounded Model Checking: Example

We consider a three-bit shift register. We wish to verify AF(xz = 0).
The contents of the register function as state variables. The transition relation:

R(z,2") = (2[0] = z[1]) A (2'[1] = «[2]) A (2'[2] = 1)
In the initial state, all registers contain 1, as represented by the predicate I(x;) =

We identify x; with vector containing a copy of the state varibles. By unrolling the transition
relation we get formula

fm = I(xz0) A R(zg,z1) A R(x1,22)

which represents the legal paths xzgx 125 of length two of the system.

Bounded Model Checking

e For some cases the BDD-based approach to model checking does not perform very

well.

o There are systems for which an exponential BDD is required to represent the system
w.r.t. the number of state variables.

e An alternative approach to symbolic model checking is to encode the problem as an
instance of propositional satisfiability and use state of the art satisfiability solvers to
attack the problem.

e The encoding is possible for finite domains, as translating first-order logic to linear
temporal logic is possible

Bounded Model Checking: Translation to Propositional Logic

Let M be a Kripke structure, I(w) the initial predicate and T'(w) the terminal predicate.
Each state w is a vector of n propositional variables w;.

The following formula [[AM]] describes the legal maximal paths w9 . .. w of length k.

k , ' k
[M]] = I(w®) A A\ R(w'™1w') A (T(wk) v\ R(wk,wl))

k

The path represented by w© . .. w" can represent infinite behaviour if it contains a loop.

‘Bounded Model Checking: Example

The universal model checking problem is converted to an existential by negating the for-
mula: EG(x 7 0). Any witness to G(z 7 0) must contain a loop. Thus we require
that there is a transition from x5 to itself, or to 1 or to xg. This transition is defined as

L; = R(x2, x;)

The constraint imposed by the formula is that x 7= O at each state. This can be captured
by the formula

Si= (@0l =1) v (z;[1] = 1) vV (zi[2] = 1)
Putting this together we get

2 2
fm A \/ L; N\ /\ S;
=0 =0
This formula is satisfiable iff there is a counterexample of length 2 for the original formula
F(z = 0).

Bounded Model Checking: Translation to Propositional Logic

‘ k . J—1

[[UtY, =V ([[d)]]i; AN [[@]]}Zf) Vv

j=i+1 m=i+1

k k . i S

V AR A R@® w) A (T A A el

1=0 \m=i+1 =l =l
The translation as it has been presented here is not very efficient. By introducing transla-
tions G+, F+, etc. it is possible to make a more efficent translation.

‘Bounded Model Checking: Translation to Propositional Logic

We define [[1/)]]%c recursively on the structure of 1. In this recursion k is fixed while 4
depends on the evaluation point. Let k,7 € N and \/;‘?:l’t,b = 1 forl >i.

o [[pll}, = p(w)
o [[L=1

o [[(p — VI, = Ulell}, — [[11})

|Partial Order Methods: Introduction

The interleaving semantics for parallel processes causes all independent events to

interleave.

The global state space includes these interleavings.

e Partial order methods aim at only generating the neccessary part of the state space
needed for the evaluation of a formula.

Only representatives of these interleavings are generated.

Bounded Model Checking

Theorem. There exists a maximal path of length k generated by M which initially
validates ¢ iff ([[M]]; A [[w]],?) is propositionally satisfiable.

o Without knowing an upperbound for k, bounded model checking can only be used for

falsification and not proving.
e For LTL, the upperbound for k is | M| x 21¥.

o |t is likely that for many cases a better upper bound exists, it is however difficult to

compute.

Partial Order Methods: Stuttering Invariance

Stuttering equivalence is the concept which allows us to identify which interleavings are
identical and group them into equivalence classes.

o Let P = {p1,...,pr} C P. Two natural models M and M’ are strongly equiv-
alent w.r.t. P, if they are of the same cardinality and for all ¢ > and all p € P,
w; € Z(p) iff w) € Z'(p).

o A point w;y 1 in M is stuttering w.rt. P, if w; € Z(p) iff w;41 € Z(p).

e The stutter-free kernel MO of a model M is obtained by retaining all non-stuttering
states of M.

|Partial Order Methods: Introduction

e The semantics of the concurrency is not changed, but the partial order nature of

events is utilized.

e The partial order methods will be presented in the contex of elementary Petri nets and
Linear Temporal Logic.

Partial Order Methods: Analysis of Elementary Nets

We are given an elementary Petri net N and an LTL-X formula ¢, with atomic propositions
PSD g S.

e Indepependence of two transition t1 and to
— Independent transitions must neither enable or disable each other

— Independent transitions enabled at m must be able to commute

o This definition is too hard to check. We need a syntactic condition.

A subset Ty, C T is persistent in a marking m iff for all ¢ € Tp, and all firing sequences
to,t1,...,tn,t such that t; & Ty, there exists a stuttering equivalent firing sequence
starting with t.

Partial Order Methods: Stuttering Invariance

e In MO w < w iff w < w in M or there are stuttering points w1, . . . , Wy, such
that w <wy < <wp < w in M.

e A formula ¢ is stuttering invariant if for all stuttering equivalent models M, M/,

M= piff M = .
e For our reduction to work we can use only stuttering invariant formulae

e Let LTL-X the logic built from propositions p € P, boolean connectives L, — and
the reflexive unitil operator U*.

Lemma. Any LTL-X formula is stuttering invariant.

Theorem Any LTL formula which is stuttering invariant is expressible in LTL-X.

‘Partial Order Methods: Analysis of Elementary Nets

Let ty be an enabled transition in ™ and ¢ a disabled transition.

NEC(t,m) = {t' | p € t'e}, for some p € (ot \ m).

NEC*(t,m) = transitive closure of NEC (t,m).

e If ¢ is disabled in m, t cannot fire before some transition in NEC™*(t, m) fire.

A transition is visible for ¢ if (et U te) N Py # 0.

The conflict of t is defined as C'(t) = {t' | et/ Nt 7%= O} U {t}.

Partial Order Methods: Analysis of Elementary Nets

If Ty, is persistent at m, we do not need to consider transitions outside Ty, as there will
be a stuttering equivalent sequence starting with t € Ty,

e The previous definition is still not efficient. No way of efficiently computing a minimal
persistent set (NP-hard?).

e \We approximate using heuristics.

IDEA: We start with Ty, = t. Then we add all transitions which can “interfere” with some

transition in Tyy,.

Interfere means either the transition cannot commute with some transition in T, or it
enables or disables a transition in Tjp,

Partial Order Methods: Analysis of Elementary Nets

Theorem. For any firing sequence p of the net there exists a firing sequence p’ generated
only by firing the enabled ready transitions such that p and p’ are equivalent w.r.t. all
LTL-X safety properties.

e The procedure could be extended to liveness properties by making sure a different set

is generated, if a marking is reached again.

e Can at best result in an exponential reduction.

o Worst case complexity cubic in the size of the net. Average example's complexity is

linear.

Partial Order Methods: Analysis of Elementary Nets

e The extended conflict of t is C'(t) if t is invisible; otherwise it is C'(t) and all other

visible transitions.

e A dependent set DEP(ty, m) of s is any set of transitions such that for any ¢ in
the extended conflict of ¢, there exists a set NEC'(t,m) C DEP(ty, m).

e Transitions which are fired should be transitively closed under dependency.

e READY (m) is any nonempty set of transitions s.t.
DEP(t;,m) C READY (m), if t; € READY (m).

