
Symbolic Model Checking and Partial Order Methods

Chapters 10 – 12

Model Checking

Timo Latvala

Outline

• Symbolic model checking

• Binary Decision Diagrams

• Model checking CTL

• Relational µ-calculus

• Bounded Model Checking

• Partial Order Methods

Symbolic Model Checking: Introduction

• Symbolic model checking tries to alleviate the state space explosion problem by using

efficient encodings of the state space.

• The state space is encoded using an implicit representation.

• For model checking we then need a symbolic representation of the transition relation

and the temporal operators.

• One symbolic encoding is using boolean functions (propositional logic)

Symbolic Model Checking: Example

Let P = {v1, v2, v3}. Then the formula (v1 ∧ v2) ∨ v3 represents the set

{110,001,011,101,111}, where 0 stands for false and 1 for true and the a string

denotes the valuation for the variables in increasing index order.

Representing the transition relation of the program can be done by a propositional formula

over P = {v1, . . . , vm, v
′
1, . . . , v

′
m}.

Let R = (v1 ↔ ¬v′1) ∧ (v2 → v′2) ∧ (v2 ∧ v3 → v′3) From the state v =

v1 ∧ v2 ∧ ¬v3 the reachable states are characterized by v′ = ¬v′1 ∧ v2.

The propositional expression representing the set of successors is in terms of primed variables

is:

∃~v(v ∧R).



Symbolic Model Checking: Binary Decision Diagrams

Finding the shortest formula representing a given set is co-NP-hard. Therefore we need

efficient methods for manipulating the formulae, which can become very large. Binary

Decision Diagrams provide such methods.

We define the three-place connective Ite(ϕ, ψT , ψF ) (’if-then-else’) in the following way:

Ite(ϕ, ψT , ψF )
def
= (ϕ ∧ ψT ) ∨ (¬ϕ ∧ ψF )

Any propositional formula can be expressed using Ite and the constants >,⊥ as

ϕ→ ψ ↔ Ite(ϕ, ψ,>).

Symbolic Model Checking: Binary Decision Diagrams

Any formula can be converted to using only Ite with the Shannon expansion:

ϕ ↔ Ite(v, ϕ{v := >}, ϕ{v := ⊥})

Example. Let ϕ = (v1 ∧ v2) → v3. We expand the variables in descending index

order. Then the corresponding INF is:

ϕ = Ite(v3, ϕ1, ϕ0)

ϕ1 = Ite(v2, ϕ11,>)

ϕ0 = Ite(v2, ϕ01,>)

ϕ11 = Ite(v1,>,>)

ϕ01 = Ite(v1,⊥,>)

The expression can be visualized as an expression tree called a decision tree.

Symbolic Model Checking: Binary Decision Diagrams

A binary decision diagram (BDD) is a rooted, directed acyclic graph which has the following

characteristics.

• There are one or two terminal nodes with zero outdegree labeled 0 and 1.

• Each variable node u has two outgoing edges low(u) and high(u)

• Each variable node u is associated with a variable var(u).

• All paths in the graph respect the given linear ordering x1 < x2 < · · · < xn.

Symbolic Model Checking: Binary Decision Diagrams

• No two distinct nodes u and v have the same variable name and low- and high-

successor.

• No variable u has identical low- and high-successor, i.e. low(u) 6= high(u).



Symbolic Model Checking: Binary Decision Diagrams

• We identify a BDD by its root node u.

• The true branch of a node is denoted high(u) and the false branch is denoted low(u).

A BDD ϕu defines a boolean function in the following way.

ϕ0 = 0

ϕ1 = 1

ϕu = Ite(var(u), ϕhigh(u), ϕlow(u)), u is a variable node.

Symbolic Model Checking: Binary Decision Diagrams

Theorem (Canonicity). For any function f : Bn → B there is exactly one BDD u

with variable ordering v1 < v2 < · · · < vn such that fu = f(v1, v2, . . . , vn).

Proof: (sketch). The proof proceeds by induction on the number of arguments of f .

For n = 0 the two possible boolean functions are true and false. Each of these have a

unique BDD representation > and ⊥. Since redundant tests are always removed, a BDD

with a variable node must be non-constant. Let f(v1, . . . , vn, vn+1) be a function of

n+ 1 arguments. Define fi(x2, . . . , xn+1) = f(i, v2, . . . , vn+1), i ∈ B. By the

induction hypothesis both f0 and f1 have unique BDD representations u0 and u1 such

that fu0 = f0 and fu1 = f1. By Shannon’s expansion we have that:

f(v1, v2, . . . , vn+1) = Ite(v1, f1, f2).

A simple case analysis (u0 = u1 and u0 6= u1) shows that this resultant BDD is unique.

Binary Decision Diagrams: Algorithms and Implementation

• The set of BDD nodes is implemented as a hash table.

• Let δ = Ite(v, δ1, δ2), then the hash table maps triples (v, δ1, δ2) to δ.

• Each BDD is identified by its variable and two children. A reduced BDD can now be

created by recursively performing the Shannon expansion on the formula.

Binary Decision Diagrams: Algorithms and Implementation

function PL2BDD (Formula ϕ) : (Nodeset, Bdd) =

Nodeset table := {}; /*Table of BDD nodes*/

Bdd max := 1;

Bdd result := BDD(ϕ,1);

return (table , result)

function BDD(Formula ϕ, Bddvar i) : = Bdd

if i > n then return eval(ϕ) /*ϕ; is constant*/

else δ1 := BDD(ϕ{vi := ⊥}, i+ 1);

δ2 := BDD(ϕ{vi := >}, i+ 1);

if δ1 = δ2 then return δ1;

else if ∃δ : (δ, i, δ1, δ2) ∈ table then return δ;

else max := max+ 1; table := table ∪ {(max , i, δ1, δ2)};

return max ;



Binary Decision Diagrams: Algorithms and Implementation

• The size of the constructed BDD can greatly depend on the ordering of the variables.

Example (v1 ↔ v3) ∧ (v2 ↔ v4).

• A good ordering can result in a BDD linear w.r.t the number of variables while a bad

ordering may result in an exponential BDD.

• Finding the optimal ordering is an NP-hard problem.

• There provably exists boolean expression which always result in an exponential BDD,

irrespectively of the variable ordering.

Binary Decision Diagrams: Algorithms and Implementation
function BDDImp (Bdd ϕ, Bdd ψ) : Bdd =

if ϕ = 0 or ψ = 1 then return 1;

else if ϕ = 1 return ψ;

else if ψ = 0 and (ϕ, i, ϕ1, ϕ2) ∈ tableϕ

then return new node(i,BDDImp(ϕ1,0),BDDImp(ϕ2,0));

else /*(ϕ, i, ϕ1, ϕ2) and (ψ, j, ψ1, ψ2)*/

if (i = j) then

return new node(i,BDDImp(ϕ1, ψ1),BDDImp(ϕ2, ψ2));

else if (i < j) then

return new node(i,BDDImp(ϕ1, ψ),BDDImp(ϕ2, ψ));

else if (i > j) then

return new node(i,BDDImp(ϕ, ψ1),BDDImp(ϕ,ψ2));

function new node(Bddvar i, Bdd δ1, Bdd δ2) : = Bdd

if δ1 = δ2 then return δ1;

else if ∃δ : (δ, i, δ1, δ2) ∈ table then return δ;

else max := max+ 1; table := table ∪ {(max , i, δ1, δ2)}; return max ;

Binary Decision Diagrams: Algorithms and Implementation

• Any boolean operation can be implemented linear time w.r.t. input BDDs

• Most BDD-packages use separate algorithms for each operator for increased efficiency.

• For model checking we still need existential quantification.

function BDDExists (Bdd ϕ, Vars ~v) : Bdd =

if ϕ =∈ {0,1} then return ϕ;

else /*(ϕ, i, ϕ1, ϕ2) ∈ table*/

δ1 = BDDExists(ϕ1, ~v); δ2 = BDDExists(ϕ2, ~v);

if i ∈ ~v then return BDDApply(∨, δ1, δ2);

else return new node(i, δ1, δ2);

Symbolic Model Checking for CTL

• We describe algorithms for computing a BDD representation ϕF of the set states

where the formula ϕ holds.

• The system is described by variables ~v = {v1, . . . , vn}. The transition relation R

is over the variables {v1, . . . , vn, v
′
1, . . . , v

′
n}.

• For each p ∈ P a BDD is given which represents the set I(p).

• Computing the BDDs for the propositional case is easy. We simply use the algorithms

described the in the previous section.

• How do we compute A(ϕU+ψ) and E(ϕU+ψ)?



Symbolic Model Checking for CTL

Essentially, we only convert the previously presented algorithm to symbolic terms.

E(ψ2U
+ψ1): We must compute the least fixpoint of the the set

{w | ∃w′(w ≺ w′ ∧ (w′ ∈ (ψF
1 ∪ ψF

2 ∩ E))}, where E is an intermediate result of

the iteration

A(ψ2U
+ψ1): The greatest least of the set

{w | ∀w′(w ≺ w′ → (w′ ∈ (ψF
1 ∪ ψF

2 ∩ E))} must be computed.

For E(ψ2U
+ψ1):

E0(w
′) = ∅

Ei+1(w) = Ei(w) ∨ ∃w′(R(w,w′) ∧ (ψF
1 (w′) ∨ (ψF

2 (w′) ∧ Ei(w
′))), where

ψF
1 , ψ

F
2 and E are BDDs.

Fixpoint calculations with BDDs are easy, as equality checking is a constant time operation.

Relational µ-calculus: Introduction

• The relational µ-calculus is rich logical language. It can be seen as a first order

predicate logic with a recursion operator.

• The symbolic techniques presented previously can also be extended for model checking

this expressive logic.

Relational µ-calculus: Preliminaries

• A collection of disjoint sets with a collection of relations over the sets is called a

(typed) structure.

• A pair Σ = (D,R) is called a signature, where D is a finite set of domain names

and R is is a set of relation symbols.

• Each relation symbol has an associated type τ .

• An interpretation I assign a structure S to signature Σ. Formally, I : Σ → S.

• For relation a R with type τ(R) = (D1, . . . , Dn) the interpretation is I(R) ⊆

I(D1) × · · · × I(Dn).

Relational µ-calculus: Syntax

Assume that the symbols (, ),⊥,→,=,∃, µ, λ are not in the signature . A well-formed

formula has the following syntax:

• ⊥, (ϕ → ψ), where ϕ and ψ are well-formed formulas,

• x1 = x2, where x1 and x2 are individual variables of the same type,

• ∃x ϕ, where ϕ is a well-formed formula, and x is an individual variable, or

• ρ x1 . . . xn, where ρ is a relation term of type (D1, . . . , Dn), and xi is an individual

variable of type Di.



Relational µ-calculus: Syntax

The relation terms have their own syntax. Very complex relation can be formed using

λ-abstraction or µ-recursion. A relation term of type (D1, . . . , Dn) is

• a relation symbol R or a relation variable X of type (D1, . . . , Dn),

• λx1 . . . xn ϕ, where ϕ is a well-formed formula and each xi is an individual variable

of type Di, or

• µXρ, where X is a relation variable of type (D1, . . . , Dn), and ρ a relation term

which is positive in X .

A relational term ρ is positive in X if every occurrence of X is under an even number of

negation signs.

Relational µ-calculus: Models and Semantics

A relation model M = (S, I,v) for a signature Σ consists of a structure S, an inter-

pretation I and variable valuation v. The semantics are as follows:

• xM = v(x), if x is an individual variable,

• ⊥M = false,

• (ϕ→ ψ)M = true iff ϕM = false or ψM = true.

• (x1 = x2)
M = true iff xM1 = xM2 ,

• (∃x ϕ)M = true iff ϕ(S,I,v′) = true and v′ differs from v at most in x.

Relational µ-calculus: Models and Semantics

• (ρx1 . . . xn)
M = true iff (xM1 , . . . , xMn ) ∈ ρM,

• RM = I(R), if R is a relation symbol, i.e. the name is connected to the preselected
interpretation,

• XM = v(X), if X is a relation variable,

• (λx1 . . . xnϕ)
M = {(d1, . . . , dn) | ϕ(S,I,v′) = true where v′ differs form v

only in the assignment of di to xi, i.e. (λx1 . . . xnϕ)
M is the relation consisting of

all tuples of objects for which ϕ is true, and

• (µXρ)M = ∩{Q | ρF(Q) ⊆ Q}, where ρF(Q) = ρ(S,I,v
′), and v′ differs

from v only in v′(X) = Q. µXρ is the least fixpoint of the functional ρF .

Relational µ-calculus: Expressivity

• The expressive power of the relational µ-calculus is between first-order logic and second

order logic.

• With the µ-recursion operator all recursive functions of arithmetic can be defined.

This means that on infinite domains the relational µ-calculus has the expressive power

of Turing machines.

• The addition-relation on natural numbers can be defined in the following way.

• Let Z be the constant zero and S the successor relation. The addition-relation is

defined by

µX(λxyz(Zx ∧ y = z ∨ ∃uv(Sux ∧ Svz ∧Xuyv)))



Relational µ-calculus: Model checking

Problem: given a relational frame F = (S, I) and a relational term ρ or a formula ϕ,

what is the denotation of ρF or ϕF .

• Model checking for finite domains is polynomial in the size of the structure.

• Assume binary domains

• BDDs are tuples (δ, i, δ1, δ2), where δ is the name of the node, i is a variable from

the set {v1, . . . , vn, x1, . . . , xm} and each δj is one of the constants 0 or 1, the

name of a relation variable, or the name of another BDD node.

• The interpretation I of a relation is a BDD over the variables v1, . . . , vn.

Relational µ-calculus: Model checking

• A term or a formula with free individual variables x1, . . . , xm is represented as a

BDD and BDD variables x1, . . . , xm.

• As the variables can appear as successors in the BDDs, substitution is simple matter

replacing the variable with a relation.

• The algorithm recursively evaluates the given formula with a case analysis.

Relational µ-calculus: Model checking

function BDDForm (Formula ϕ, Interpretation I) : Bdd =

/*Calculates the BDD of formula ϕ in the interpretation I*/

case ϕ of

x ∈ V : return Ite(x,1,0);

(x1 = x2) : return Ite(x1, Ite(x2,1,0), Ite(x2,0,1)) ;

⊥ return 0;

(ψ1 → ψ2) : return BDDImp(BDDForm(ψ1,I), BDDForm(ψ2,I));

∃x ϕ : return BDDExists(x,BDDForm(ϕ,I));

ρx1 . . . xn : return BDDTerm(ρ,I){v1 := x1} · · · {vn := xn};

Relational µ-calculus: Model checking

function BDDTerm(RelationalTerm ρ, Interpreation I) : = Bdd

case ρ of

R ∈ R: return I(R); /*pointer to BDD for R*/

X ∈ V : return X ; /*name of X*/

λx1 . . . xnϕ : return BDDForm(ϕ,I)){v1 := x1} · · · {vn := xn} ;

µXρ : r :=BDDTerm(ρ, I); return BDDlfp(r,0);

function BDDlfp(BDD r, BDD Xi) : BDD =

Xi+1 := r{X := Xi};

if (Xi+1 = Xi) then return Xi;

else return BDDlfp(r,Xi+1);



Bounded Model Checking

• For some cases the BDD-based approach to model checking does not perform very

well.

• There are systems for which an exponential BDD is required to represent the system

w.r.t. the number of state variables.

• An alternative approach to symbolic model checking is to encode the problem as an

instance of propositional satisfiability and use state of the art satisfiability solvers to

attack the problem.

• The encoding is possible for finite domains, as translating first-order logic to linear

temporal logic is possible

Bounded Model Checking: Example

We consider a three-bit shift register. We wish to verify AF(x = 0).

The contents of the register function as state variables. The transition relation:

R(x, x′) = (x′[0] = x[1]) ∧ (x′[1] = x[2]) ∧ (x′[2] = 1)

In the initial state, all registers contain 1, as represented by the predicate I(xi) =

xi[0] = 1 ∧ xi[1] = 1 ∧ xi[2] = 1.

We identify xi with vector containing a copy of the state varibles. By unrolling the transition

relation we get formula

fm ≡ I(x0) ∧R(x0, x1) ∧R(x1, x2)

which represents the legal paths x0x1x2 of length two of the system.

Bounded Model Checking: Example

The universal model checking problem is converted to an existential by negating the for-
mula: EG(x 6= 0). Any witness to G(x 6= 0) must contain a loop. Thus we require
that there is a transition from x2 to itself, or to x1 or to x0. This transition is defined as

Li ≡ R(x2, xi)

The constraint imposed by the formula is that x 6= 0 at each state. This can be captured
by the formula

Si ≡ (xi[0] = 1) ∨ (xi[1] = 1) ∨ (xi[2] = 1)

Putting this together we get

fm ∧
2
∨

i=0

Li ∧
2
∧

i=0

Si

This formula is satisfiable iff there is a counterexample of length 2 for the original formula
F(x = 0).

Bounded Model Checking: Translation to Propositional Logic

Let M be a Kripke structure, I(w) the initial predicate and T (w) the terminal predicate.

Each state w is a vector of n propositional variables wi.

The following formula [[M]] describes the legal maximal paths w0 . . . wk of length k.

[[M]] = I(w0) ∧
k
∧

i=1

R(wi−1, wi) ∧



T (wk) ∨
k
∨

l=0

R(wk, wl)





The path represented by w0 . . . wk can represent infinite behaviour if it contains a loop.



Bounded Model Checking: Translation to Propositional Logic

We define [[ψ]]ik recursively on the structure of ψ. In this recursion k is fixed while i

depends on the evaluation point. Let k, i ∈ N and ∨kj=lψ = ⊥ for l > i.

• [[p]]ik = p(wi)

• [[⊥]]ik = ⊥

• [[(ϕ → ψ)]]ik = ([[ϕ]]ik → [[ψ]]ik)

Bounded Model Checking: Translation to Propositional Logic

[[(ϕU
+ψ)]]ik =

k
∨

j=i+1



[[ψ]]
j
k ∧

j−1
∧

m=i+1

[[ϕ]]mk



 ∨

k
∨

l=0





k
∧

m=i+1

[[ϕ]]mk ∧R(wk, wl) ∧
i

∨

j=l



[[ψ]]
j
k ∧

j−1
∧

m=l

[[ϕ]]mk









The translation as it has been presented here is not very efficient. By introducing transla-

tions G+,F+, etc. it is possible to make a more efficent translation.

Bounded Model Checking

Theorem. There exists a maximal path of length k generated by M which initially

validates ψ iff ([[M]]k ∧ [[ψ]]0k) is propositionally satisfiable.

• Without knowing an upperbound for k, bounded model checking can only be used for

falsification and not proving.

• For LTL, the upperbound for k is |M| × 2|ψ|.

• It is likely that for many cases a better upper bound exists, it is however difficult to

compute.

Partial Order Methods: Introduction

• The interleaving semantics for parallel processes causes all independent events to

interleave.

• The global state space includes these interleavings.

• Partial order methods aim at only generating the neccessary part of the state space

needed for the evaluation of a formula.

• Only representatives of these interleavings are generated.



Partial Order Methods: Introduction

• The semantics of the concurrency is not changed, but the partial order nature of

events is utilized.

• The partial order methods will be presented in the contex of elementary Petri nets and

Linear Temporal Logic.

Partial Order Methods: Stuttering Invariance

Stuttering equivalence is the concept which allows us to identify which interleavings are

identical and group them into equivalence classes.

• Let P = {p1, . . . , pk} ⊆ P . Two natural models M and M′ are strongly equiv-

alent w.r.t. P , if they are of the same cardinality and for all i ≥ and all p ∈ P ,

wi ∈ I(p) iff w′
i ∈ I′(p).

• A point wi+1 in M is stuttering w.r.t. P , if wi ∈ I(p) iff wi+1 ∈ I(p).

• The stutter-free kernel M0 of a model M is obtained by retaining all non-stuttering

states of M.

Partial Order Methods: Stuttering Invariance

• In M0: w < w′ iff w < w′ in M or there are stuttering points w1, . . . , wk such
that w < w1 < · · · < wk < w′ in M.

• A formula ϕ is stuttering invariant if for all stuttering equivalent models M,M′,
M |= ϕ iff M′ |= ϕ.

• For our reduction to work we can use only stuttering invariant formulae

• Let LTL-X the logic built from propositions p ∈ P , boolean connectives ⊥,→ and
the reflexive unitil operator U∗.

Lemma. Any LTL-X formula is stuttering invariant.

Theorem Any LTL formula which is stuttering invariant is expressible in LTL-X.

Partial Order Methods: Analysis of Elementary Nets

We are given an elementary Petri net N and an LTL-X formula ϕ, with atomic propositions

Pϕ ⊆ S.

• Indepependence of two transition t1 and t2

– Independent transitions must neither enable or disable each other

– Independent transitions enabled at m must be able to commute

• This definition is too hard to check. We need a syntactic condition.

A subset Tm ⊆ T is persistent in a marking m iff for all t ∈ Tm and all firing sequences

t0, t1, . . . , tn, t such that ti 6∈ Tm, there exists a stuttering equivalent firing sequence

starting with t.



Partial Order Methods: Analysis of Elementary Nets

If Tm is persistent at m, we do not need to consider transitions outside Tm, as there will

be a stuttering equivalent sequence starting with t ∈ Tm.

• The previous definition is still not efficient. No way of efficiently computing a minimal

persistent set (NP-hard?).

• We approximate using heuristics.

IDEA: We start with Tm = t. Then we add all transitions which can“interfere”with some

transition in Tm.

Interfere means either the transition cannot commute with some transition in Tm or it

enables or disables a transition in Tm

Partial Order Methods: Analysis of Elementary Nets

Let tf be an enabled transition in m and t a disabled transition.

• NEC (t,m) = {t′ | p ∈ t′•}, for some p ∈ (•t \m).

• NEC ∗(t,m) = transitive closure of NEC (t,m).

• If t is disabled in m, t cannot fire before some transition in NEC ∗(t,m) fire.

• A transition is visible for ϕ if (•t ∪ t•) ∩ Pϕ 6= ∅.

• The conflict of t is defined as C(t) = {t′ | • t′ ∩ •t 6= ∅} ∪ {t}.

Partial Order Methods: Analysis of Elementary Nets

• The extended conflict of t is C(t) if t is invisible; otherwise it is C(t) and all other

visible transitions.

• A dependent set DEP(tf ,m) of tf is any set of transitions such that for any t in

the extended conflict of tf , there exists a set NEC (t,m) ⊆ DEP(tf ,m).

• Transitions which are fired should be transitively closed under dependency.

• READY (m) is any nonempty set of transitions s.t.

DEP(tf ,m) ⊆ READY (m), if tf ∈ READY (m).

Partial Order Methods: Analysis of Elementary Nets

Theorem. For any firing sequence ρ of the net there exists a firing sequence ρ′ generated

only by firing the enabled ready transitions such that ρ and ρ′ are equivalent w.r.t. all

LTL-X safety properties.

• The procedure could be extended to liveness properties by making sure a different set

is generated, if a marking is reached again.

• Can at best result in an exponential reduction.

• Worst case complexity cubic in the size of the net. Average example’s complexity is

linear.


