HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Computer Science

Laboratory for Theoretical Computer Science

T-79.298 Postgraduate course in Digital Systems Science

Timo Latvala

Symbolic Model Checking and Partial Order Methods

Contents
1 Introduction
2 Symbolic Model Checking

3 Binary Decision Diagrams

3.1 Algorithms and Implementation
4 Symbolic Model Checking for CTL

5 Relational p-calculus
5.1 Syntax and Semantics

5.2 Model Checking

6 Bounded Model Checking
6.1 Example

6.2 Translation to Propositional Logic

7 Partial Order Methods
7.1 Elementary Petri Nets
7.2 Stuttering Invariance L.

7.3 A Partial Order Method for Elementary Nets

10

10
11
13

14
15
16

1 Introduction

Model checking is a powerful technique for verifying the correctness of re-
active systems. It can automatically prove that a model of a system has a
desired property, which has been specified using a suitable temporal logic.
Model checking also provides a counterexample to the given property if it
does not hold, which is at least as important as its ability to automatically
prove properties.

The applicability of model checking is, however, severely restricted by the
state space explosion problem. For model checking to be truly useful, it
must be possible to apply model checking to systems which are of relevant
complexity. In other words, systems of the size which the industry currently
produces.

The state space explosion problem can be explained by complexity theoretical
arguments. Model checking is PSPACE-complete in the system description,
when the system is described by a Petri net, a composition of parallel pro-
cesses or other comparable formalisms. In many cases, notably for LTL and
other more expressive logics, model checking is also PSPACE-complete in
the length of the specification. Thus it is unlikely that we can find meth-
ods which will circumvent the state space explosion. However, methods for
alleviating the state space explosion exist.

This work covers three different methods for alleviating the state space ex-
plosion in model checking. Two of the methods can be classified as symbolic:
using binary decisions diagrams and bounded model checking. The third
method, partial order reduction, is mostly applied in the domain of explicit
state model checking.

We assume that the reader is familiar with propositional logic, and the basics
of temporal logic and model checking.

2 Symbolic Model Checking

Symbolic model checking tries to alleviate the state space explosion problem
by using efficient encodings of the state space. Instead of representing each
state in the state space explicitly, the whole state space is encoded using
an implicit representation. For model checking to be possible we also need a
symbolic representation of the transition relation and the temporal operators.

One possible symbolic encoding is propositional formulae. There exist effi-
cient techniques for manipulating boolean functions and propositional formu-
lae. A propositional encoding can also be efficient: k variables can represent
2% states. With a propositional encoding it straight forward to represent a
shared variables program.

Consider a shared variables program P over the variables V = {vy,va,... ,v,}
with finite domains D = {Dy, Ds,... ,D,}. Any finite domain D; can be
encoded using k; = logs|D;| variables. Thus we can represent the state of the
program with m = n) . k; variables. The basic idea is that the set models
of the propositional formula over P = {vy, ... ,v,,} represents a set of states
of the program.

Example. Let P = {vy,v9,v3}. Then the formula (v; A v3) V v3 represents
the set {110,001,011,101, 111}, where 0 stands for false and 1 for true and
a string denotes the valuation for the variables in increasing index order.

Representing the transition relation of the program can be done by a propo-
sitional formula over P = {vy,... ,vm,v],... v, }. The primed variables
represent possible values of the state variables reachable in one step.

Example. Consider the formula R = (v; <> —0}) A ((v2 = v3) <> (vh A v})).
Again the possible models represent the reachable states. From the state
v = v1 A —w9 A vz the reachable states are characterised by v/ = —v] A vy A vj.

Given a propositional formula, ¢, representing a set of states and proposi-
tional formula, R, representing the transition relation, the states reachable
in one step can be computed by existential quantification using substitution.
Existential quantification is defined in the following way.

(Fvp) < (v =L} Ve{v:=T})
Let ¢ denote all variables vy,... ,v,, and s be a propositional formula over

U representing the current know set of states. The propositional expression
representing the set of successors of s in terms of primed variables is

s' = 3(s A R).

The formula is only over the variables v}, ... ,v,, as the unprimed variables
have been quantified away. The two sets s and s’ can easily be combined into
one set with variable substitution: sV s'{v' := ¥}.

Finding the shortest formula representing a given set is co-NP-hard. There-
fore we need efficient methods for manipulating the formulae, which can
become very large. The two methods presented next, approach the problem
in different ways.

3 Binary Decision Diagrams

Using a normal form is one way of trying to keep the size of the formulae
describing state space, transition relation and the temporal formulae small.
A Binary Decision Diagram (BDD) is such a normal form.

We define the three-place connective Ite(y, 7, ¥ r) (’if-then-else’) in the fol-
lowing way:

TIte(p, Yr, 'lﬁF) = (80 ANr) V (¢ AYr)

Any propositional formula can be expressed using Ite and the constants
T,L. This can be easily be seen by the fact that ¢ — ¥ + Ite(p, ¢, T).
A boolean expression containing only Ite, T, L and variables, such that all
tests are performed on variables is called the If-then-else Normal Form (INF).
Consider the formula ¢ containing the variable v. The following equivalence
holds.

v < Ite(v, p{z =T}, p{z:= 1})

This is called the Shannon expansion. Using the Shannon expansion the INF
of any formula can be obtained. If the Shannon expansion is applied to a
formula ¢, we obtain two expressions p{v; := T} and ¢{v; := L}, which
contain one variable less. By applying the expansion recursively to these two

expressions, call them ¢; and ¢y we eventually get an expression which is in
INF.

Example. Let ¢ = (v; <> v3) A (v3 <> v4). We expand the variables in
descending index order. Then the corresponding INF is:

¢ = Ite(vs, 1, ¥0)
o1 = Ite(vs,pn, L)
wo = Ite(vs, L, v0)
o1 = Ite(vz, o111, P110)
woo = Ite(vz, Poo1, Pooo)
11 = Ite(
w110 = Ite(
Yoo1 = Ite(vl,T 1
wooo = Ite(vy, L, T

lé@ JEBBL

Figure 1: Decision diagram for ¢ = (v; <> v2) A (U3 > v4).

Figure 2: Binary Decision diagram for ¢ = (v1 <> v2) A (v3 <> v4).

The expression can be visualised as an expression tree called a decision tree.
See Figure 1.

The decision tree contains a lot of redundancy. A BDD can be obtained
from the decision tree by identifying all isomorphic subtrees and removing
all redundant tests. Figure 2 shows the BDD obtained. The ordering of the
variables follows the order in which the expression was expanded.

A BDD is a rooted, directed acyclic graph which has the following charac-
teristics.

e There are one or two terminal nodes with zero outdegree labeled 0 and
1.

e Each variable node u is associated with a variable var(u).

e Each variable node u has two outgoing edges low(u) and high(u)

e All paths in the graph respect the given linear ordering z; < 3 < --- <
Ty

We identify a BDD by its root node u. Each BDD node w with its children,
can be treated as a separate BDD. A BDD ¢ defines a boolean function in
the following way.

' =0
=1
o' = Tte(var(u), p""® plov®™) 4 is a variable node.

A reduced BDD with a given variable ordering is canonical form for boolean
functions f : B* — B. There is exactly one BDD representing each f.

Theorem (Canonicity). For any function f : B* — B there is exactly
one BDD u with variable ordering v; < v9 < -++ < v, such that f* =

f(’Ul,’Ug, . ,’Un).

Proof: (sketch). The proof proceeds by induction on the number of ar-
guments of f. For n = 0 the two possible boolean functions are true and
false. Each of these have a unique BDD representation T and L. Since
redundant tests are always removed, a BDD with a variable node must be
non-constant. Let f(vy,...,v,,v,11) be a function of n + 1 arguments. De-
fine fi(za,... ,Zpny1) = f(i,02,... ,Uny1),7 € B. By the induction hypothesis
both fy and f; have unique BDD representations ug and u; such that f* = f,
and f** = f;. By Shannon’s expansion we have:

f(vla/U% s avn—l-l) = Ite(Ul,fl,fg).

A simple case analysis (ug = u; and ug # u1) shows that this resultant BDD
is unique.

Canonicity has some implications. Checking if the formula represented by
the BDD is satisfiable is a constant time operation. We just have to check
that the BDD does not solely consist of the zero node. For sophisticated
implementations, also comparing two BDDs for equality is a constant time
operation.

3.1 Algorithms and Implementation

Constructing the corresponding BDD to formula by first making the decision
diagram is very inefficient. This will always result in an exponential running

6

function PL2BDD (Formula ¢) : (Nodeset, Bdd) =
Nodeset table := {}; /*Table of BDD nodes*/
Bdd maz :=1;
Bdd result := BDD(y, 1);
return (table, result)

function BDD(Formula ¢, Bddvar i) : = Bdd
if i > n then return eval(p) /*¢; is constant™/
else ¢; := BDD(¢{v; := L},i+ 1);62 := BDD(p{v; :== T},i+ 1);
if 6; = 6 then return dy;
else if 30 : (9,4, 61, d2) € table then return d;
else maz := maz + 1; table := table U {(maz,i,d1,09)};
return maxz;

Figure 3: Creating a BDD from a formula ¢

time w.r.t. the number of variables. The solution is to construct a BDD
which is reduced on-the-fly.

To construct a reduced BDD, we must be able to identify isomorphic subtrees.
For this purpose the set of BDD nodes is implemented as a hash table. Given
that § = Ite(v,dy,d2) the hash table maps triples (v,d1,d2) to §. v is the

variable of the BDD, and é; and §; its children. Each BDD can be identified
by its variable and two children.

A reduced BDD can now be created by recursively performing the Shannon
expansion on the formula. If the two resulting branches are equal one of
them is returned. Otherwise we check if the new BDD is in the table and
return it if it is not. Figure 3 shows one possible way of converting a formula
to a BDD. This algorithm performs much better in practice than the naive
approach suggested above. The worst case performance is still exponential.

The size of the constructed BDD can greatly depend on the ordering of the
variables. Consider a BDD for (v; <> v3) A (vs <> v4). As can be seen
from Figure 2, when using the ordering v4 < vz < vy < v; the BDD only
has nine nodes while the ordering v, < vo < v3 < v; depicted in Figure 4
results in a BDD with eleven nodes. For long formulas the difference is
significant. A good ordering can result in a BDD which is linear w.r.t the
number of variables while a bad ordering may result in an exponential BDD.
Finding the optimal ordering is an NP-hard problem, and not feasible in
practice. Heuristics for finding a good ordering can be used, but they will not

Figure 4: Binary Decision diagram for ¢ = (v <> v2) A (v3 > v4) with
another variable ordering.

always work. In general not all boolean expressions have small BDDs. There
provably exists boolean expressions which always result in an exponential
BDD, irrespectively of the variable ordering. Unfortunately these BDDs also
appear in practice e.g. multiplier circuits.

In order for the BDD representation to be useful we must be able to apply
boolean connectives on the two BDDs. In other words, we must be able to
compute the BDD which is result of applying the connective to the propo-
sitional formulas the two original BDDs represent. If this can be done for
implication, the other operands follow automatically. Figure 5 shows an al-
gorithm to compute implication

The algorithm for computing the implication between two BDDs works in the
following way. The first four lines of the algorithm deal with the cases where
either ¢ or 1 is constant. The two first lines simply follow the definition of
implication. The third line where 1y = 0 can be motivated by the equivalence.

(Ite(v, 51, (52) —)) — Ite(v, ((51 — 1, 0y — J_)

The remaining lines are concerned with the case when both ¢ and 1 are in
the table. By using the associativity of the Ite-operator the remaining cases
recurse down the BDDs, advancing in the BDD which has the smaller variable
in the variable ordering. The recursion must terminate as the terminal nodes
of the BDDs are eventually reached.

Computing the implication is linear in the BDDs. Any boolean operation can
be implemented in linear time. Bryant [3] has given a uniform scheme how to
handle all 16 boolean operators. The function, BDDApply(op, Bdd ¢, Bdd
), will not be presented here. Most BDD-packages use separate algorithms

function BDDImp (Bdd ¢, Bdd ¢) : Bdd =

if o =0 or ¢y = 1 then return 1;

else if ¢ = 1 return ¢;

else if ¢y = 0 and (v, 1, 1, @2) € table,
then return new_node(7, BDDImp(y1,0), BDDImp(ip2, 0));

else /*(<P7 i, %1, 902) and (¢a i, Y1, 1/)2)*/
if (¢ = j) then return new_node(z, BDDImp(p1, 11), BDDImp(ps, ¥));
else if (i < j) then return new_node(i, BDDImp(p1, %), BDDImp(y2, ¥));
else if (i > j) then return new_node(i, BDDImp(p, 1), BDDImp(¢p, 12));

function new_node(Bddvar 7, Bdd §;, Bdd d,) : = Bdd
if §; = § then return dy;
else if 30 : (4,1, 61, 02) € table then return J;
else mazx := maz + 1; table := table U {(maz,1,01,02)}; return maxz;

Figure 5: Computing the implication ¢ — 1 of two BDDs

function BDDExists (Bdd ¢, Vars ¢) : Bdd =
if o € {0,1} then return y;
else /*((10727 ¥1, @2) € table*/
9 = BDDExists(¢1, ¥); do = BDDExists(y2, 9);
if i € ¥ then return BDDApply(V, 41, d2);
else return new_node(i, 01, 02);

Figure 6: Computing the existential quantification 37 .

for each operator for increased efficiency. The special purpose algorithms can
better make use of the symmetries and idempotencies present.

In the last section existential quantification was needed to compute one step
reachability. In principal we already have everything need compute existen-
tial quantification as it was defined in the following way.

v p{v=T}Ve{v:=_1}

Computing the existential quantification for a set of variables ¢ could be done
as a sequence of substitutions, but it would highly inefficient. The algorithm
of Figure 6 shows how it can be done directly.

In contrast to performing a series of substitutions, the algorithm can quantify
any of the variables on demand and therefore perform better. With existential
quantification, all the pieces are now in place to facilitate symbolic model

9

checking.

4 Symbolic Model Checking for CTL

We now describe how symbolic model checking for CTL can be done. Essen-
tially we describe algorithms for computing a BDD representation ¢” of the
set states where the formula ¢ holds. Assume that the system is described
by variables ¥ = {vy, ... ,v,}. The transition relation R is over the variables
{v1,... ,vn,0},...,v,}. For each p € P a BDD is given which represents
the set Z(p). Computing the BDDs for the propositional case is easy. We
simply use the algorithms described the in the previous section to combine
BDDs. To evaluate a formula E(¢;U1;) a similar iteration as in the ex-
plicit case must be done. We must compute the least fixpoint of the the set
{w | Fw'(w < w' A (W € (YT Uyd NE))}, where E is an intermediate result
of the iteration. In BDD terms the we simply replace the set operations with
boolean V and A, and < is replaced the transition relation R. This can be
described in the BDD terms the following way.

Eo(’wl) - 0
Eip(w) = Ei(w)V 3w (R(w,w') A @7 () V (@7 (') A Ei(w)))

where 17 47 and E are BDDs. As equality between BDDs can be detected
in constant time, this fixpoint calculation is easy. To compute A (¢,U1;)
the least fixpoint of the set {w | Vw'(w < w' — (w' € (¥ Uy NE))} must
be computed.

5 Relational u-calculus

The relational p-calculus is rich logical language. It can be seen as a first
order predicate logic with a recursion operator. The symbolic techniques
presented previously can also be extended for model checking this expressive
logic.

A collection of disjoint sets with a collection of relations over the sets is called
a (typed) structure. The sets are referred to as domains and the elements of
the sets as objects. A pair ¥ = (D,R) is called a signature, where D is a
finite set of domain names and R is is a set of relation symbols. Each relation

10

symbol has an associated type 7, which is a sequence of domain names. The
names of the domains in the relation fix its type.

An interpretation T assigns a structure S to signature 3. Formally,Z : ¥ — §
is a mapping which assigns a non-empty set to each domain name and relation
of the appropriate arity and type to each relation symbol. For a relation R
with type 7(R) = (D4, ..., D,) the interpretation is Z(R) C Z(D;) X -+ X
Z(D,). When the interpretation of a predicate symbol R is a single domain,
R is called a constant.

5.1 Syntax and Semantics

The syntax of the relational p-calculus has two syntactic categories, well-
formed formulas and relation terms of type 7. Let V be a set of variables
with appropriate types from the signature ¥. Assume that the symbols
(,),L,—,=,3, u, A are not in the signature. A well-formed formula has the
following syntax:

1, (¢ =), where ¢ and ¢ are well-formed formulas,

® 1, = 9, where x; and x5 are individual variables of the same type,

dx ¢, where ¢ is a well-formed formula, and z is an individual variable,
or

® p ...z, where p is a relation term of type (D,...,D,), and z; is

an individual variable of type D;.

The relation terms have their own syntax. Very complex relations can be
formed using A-abstraction or u-recursion. A relation term of type (Dy, ... ,D,)
is

e a relation symbol R or a relation variable X of type (D, ..., D,),

® \xy...x, ¢, where ¢ is a well-formed formula and each z; is an indi-
vidual variable of type D;, or

e uXp, where X is a relation variable of type (Ds,...,D,), and p a
relation term which is positive in X.

11

A relational term p is positive in X if every occurrence of X is under an even
number of negation signs.

A relational model can now be defined for the calculus. A relation model
M = (S,Z,v) for a signature X consists of a structure S, an interpretation Z
and variable valuation v. The variable valuation assigns an object v(z) € D
to each variable z of type D. Each relation variable X of type (D, ... ,D,)
is assigned a relation v(X) C (Dy X --+ x D,). The model also assigns a
truth value o™ to each formula (. The semantics, also known as denotation,
are as follows:

e zM = v(z), if z is an individual variable,

o | M= false,

o (¢ = Y)M = true iff o™ = false or y™ = true.

o (z; = zo)M = true iff 2 = 21,

o (Jz p)M = true iff p(57¥) = true and v’ differs from v at most in z.
o (pz1...2,)M = true iff (z1,... ,zM) € pM

e RM =T(R), if R is a relation symbol, i.e. the name is connected to the
preselected interpretation,

o XM =v(X),if X is a relation variable,

o Ozy...zp0)™) = {(dy,... ,dn) | o5TY) = true} where v’ differs
form v only in the assignment of d; to =;, i.e. (Azy...z,0)M is the
relation consisting of all tuples of objects for which ¢ is true, and

e (UXp)™ = N{Q | P7(Q) C Q}, where p™(Q) = pST¥), and v differs

from v only in v/(X) = Q. uXp is the least fixpoint of the functional

p”.

The expressive power of the relational u-calculus is between first-order logic
and second order logic. The logic has existential quantification while the
p-recursion operator provides a restricted form of second order quantifica-
tion. If A-abstractions on relation variables were allowed, the result would
be a second-order calculus. With the u-recursion operator all recursive func-
tions of arithmetic can be defined. This means that on infinite domains
the relational p-calculus has the expressive power of Turing machines. The
addition-relation on natural numbers can be defined in the following way. Let

12

Z be the constant zero and S the successor relation. The addition-relation
is defined by

puX (Axyz(Zz ANy = z V Juv(Suz A Svz A Xuyv)

The formula essentially says that x,y and z are in the relation either if x = 0
and y equals z or there exists u and v such that x = u+ 1, 2z = v+ 1 and
u+y=v.

5.2 Model Checking

For finite domains the model checking problem is polynomial in the size of the

structure. Thus, given a relational frame F = (S,Z) and a relational term p

or a formula ¢, model checking can be used to determine the denotation p”
f

or ¢’ .

The underlying implementation represents the different elements of the cal-
culus in the following way. We assume for simplicity that all domains are
binary. Non-binary domains are also possible by using an appropriate en-
coding. We modify our definition of BDDs somewhat to cope with relation
names and symbols. BDDs are tuples (6,1, 01, 02), where ¢ is the name of
the node, ¢ is a variable from the set {vi,... ,v,,21,... ,2,} and each §; is
one of the constants 0 or 1, the name of a relation variable, or the name of
another BDD node.

The interpretation Z of a relation is BDD over the variables vy, ... ,v,. Each
v; encodes one domain. A term or a formula with free individual variables
Z1,... , Ty is represented as a BDD and BDD variables z4, ... , z,,. Relation
variables are represented simply by their names. As the variables can appear
as successors in the BDDs, substitution is a simple matter of replacing the
variable with a relation.

The algorithm which performs the model checking is called BDDForm and
can it be seen in Figure 7. The algorithm recursively evaluates the given
formula with a case analysis. Only the last case where a relational term is
evaluated is a little complicated. The other cases are straightforward appli-
cations of the BDD algorithms presented earlier. For example, the equality
test case builds a BDD which first tests if 1 = 1 and then tests x, if it has
the same value using three Ite-operators. The last case, where a relational
term is evaluated, uses an auxiliary function BDDTerm. The function BD-
DTerm takes as arguments the relational term p and an interpretation Z. If
p is a relation R or a relation variable X then the relation or the variable

13

function BDDForm (Formula ¢, Interpretation 7) : Bdd =

/*Calculates the BDD of formula ¢ in the interpretation Z*/
case ¢ of

x € V : return Ite(z,1,0);

(z1 = x2) : return Ite(xq, Ite(zy, 1,0),Ite(z2,0,1)) ;

1: return 0;

(1 — 13) : return BDDImp(BDDForm(4,Z),

BDDForm(t),7));
dz ¢ : return BDDExists(z,BDDForm(p,T));
pxy ... T, : return BDDTerm(p,Z){v1 := 21} - {vn =20 };

function BDDTerm(RelationalTerm p, Interpretation Z) : = Bdd
case p of
R € R: return Z(R); /*pointer to BDD for R*/
X € V: return X; /*name of X*/
Ay ... zop : return BDDForm(p, Z){vy := x1} -+ - {v, := 2} ;
uXp : r:=BDDTerm(p,Z); return BDDIfp(r, 0);

function BDDIfp(BDD r, BDD X*) : BDD =
Xith=p{X = X'};
if (X*! = X*) then return X
else return BDDIfp(r, X*™!);

Figure 7: Algorithms for model checking the relational u-calculus

name is returned. The third case, A-abstraction uses BDDForm to return a
BDD where the free individual variables have been replaced with vy,... ,v,.
The last case, computing the least fixed point, can be done with standard
techniques. First the a BDD for the functional p is computed. The least
fixpoint is then computed by a series of approximations X%, X1, ..., X* ...,
until X? = X*+!1. Testing for equality of BDDs is a constant time operation

for advanced implementations.

6 Bounded Model Checking

For some cases the BDD-based approach to model checking does not perform
very well. There are systems for which an exponential BDD is required to
represent the system w.r.t. the number of state variables.

14

An alternative approach to symbolic model checking is to encode the problem
as an instance of propositional satisfiability and use state of the art satisfiabil-
ity solvers to attack the problem. The encoding is possible for finite domains,
as translating first-order logic to linear temporal logic is possible [4]. When
the domains are finite, the existential quantifications can be replaced by a se-
ries of disjunctions. This approach avoids the use of a normal form and relies
on the efficiency of the solver to deal with the complexity of the formulae.
The main advantage is that the representation is some times exponentially
more succinct than using BDDs. For this approach, time rather than memory
is the main bottleneck.

The approach was introduced by Biere et. al[2]. They coined the term
bounded model checking for a method of unrolling symbolically the system k
steps, and then checking if it is possible to find a counterexample to a given
LTL formula that is k steps long.

6.1 Example

Consider a two-bit register. We represent the contents of the register in the
state ¢ with the propositional variables wi and wi. The register has the
following transition relation R(w?, w*!) = (wi V w}) + wit™ A (wi @ w}) +
wit!. Initially both registers are set, which is given by the initial predicate
I(w) = w1 Awy. We wish to verify that eventually the contents of the register
will be empty, i.e. F(—w; A—wsy). The negation of this formula is G(w; Vws).

To consider counterexamples of length k£ = 2, we give a propositional formula
which symbolically describes all possible paths of length two

M = I(w°) A R(w®,w') A R(w', w?).

We add the requirement that the path must either contain a loop or w?
must be terminal, so that it describes maximal paths required by the LTL

semantics.
P = T(w?) vV R(w? w?) vV R(w? w") vV R(w? w°)

Here T'(w) is the terminal predicate. Finally we must formulate the require-
ment given by the formula G(w; Vw,). This is equivalent to that the register
is not zero in each state:

F = (wi Vwy) A (wy Vwy) A (w; V)

15

By combining these constraints for the model, path and formula we get the
formula M A P A F which is satisfiable if and only if the formula F(—w; A—ws)
has a counterexample of length two. In this case the formula is satisfiable.

6.2 Translation to Propositional Logic

The procedure above can be generalised and done for any finite state Kripke
structure and LTL formula. Let M be a Kripke structure, I(w) the initial
predicate and T'(w) the terminal predicate. The following formula [[M]]
describes the legal maximal paths w°...w* of length k.

k

The path represented by w°...w" can represent infinite behaviour if it con-

tains a loop.

In the translation of an LTL formula ¢ to propositional logic the translation
proceeds recursively on the structure of the formula. The propositional op-
erators are trivial to translate as they are also a part of propositional logic.
The translation of U™ merits some discussion.

The until operator U requires that ¢ is true in some future state and
that ¢ holds up until that state. For a path w®...w" there are two ways in
which the until formula can be satisfied in a state w?.

o w’ |=1 for some i < j < k and w™ = ¢ for all i < m < j. This holds
also when w* is terminal.
e The path has loop from w* to some w', i.e. R(w*,w'), and w’ |= 1 for
< j<iandw™ Eepforalli<m<kandl<m<j.
The two different situations are depicted Figure 8.

Now we define [[¢/]]¢ recursively on the structure of . In this recursion k is
fixed while ¢ depends on the evaluation point. Let k,7 € N and \/;?:lzp =1
for [> 1.

e [[p]]c. = p(w?), i.e. the proposition for p in w’
o [L]i=1

16

f | —— f

Figure 8: The two different ways of satisfying an 'until’-formula

o [[(¢ = Pk = ([l — [[¥1)

(U = \/ ([WJ]HQA /_\ [[w]]?)\/

j=it1 m=i+1

V < A L6l A Rewtw) 1/ <[[wm; A [[9011?))

=0 \m=i+1

The translation as it has been presented here is not very efficient. By in-
troducing translations G*,F*, etc. it is possible to make a more efficient
translation.

The presented results can summarised in the following theorem.

Theorem. There exists a maximal path of length k& generated by M which
initially validates 9 iff ([[M]]x A [[]]2) is propositionally satisfiable.

Without knowing an upper bound for k£, bounded model checking can only
be used for falsification and not proving. For LTL, the upper bound for k
is |[M| x 2l Tt is likely that for many cases a better upper bound exists.
However, finding a good upper bound for k is a hard problem.

7 Partial Order Methods

When a system consists of several parallel components, there usually is be-
haviour in the processes which is independent of the behaviour of the other
processes. The interleaving semantics for concurrency does not, however,
take this into account when the global behaviour is generated. The global
behavior contains all interleavings Partial order methods formalise this no-
tion of independence and utilise it for generating smaller state spaces. Only

17

the part of the state space which is needed to evaluate a given formula is
generated.

Partial order methods are usually applied in the context of explicit model
checking, although partial order methods for symbolic model checking also
exist.

7.1 Elementary Petri Nets

Partial order methods work on the level of the system description. Here we
use elementary Petri nets are our formalism.

Definition. An elementary Petri net is a tuple N = (P, T, F, so), where

e P is a finite set of places,
e T is a finite set transitions s.t. PNT = 0,
e FC (P xT)U(T x P) is the flow relation, and

e 5o C P is the initial marking of the net.

By ex = {y| (y,z) € F} we denote the preset of a place or a transition
and ze = {y| (z,y) € F} denotes the postset. A marking is a subset of
P. A transition t € T is enabled if ¢ C m and (t e Nm) C et. If a
transition ¢ is enabled in a marking m it can be fired resulting in the marking
m' = (m \ ot) U te. The size of the state space bounded by 2/7!

7.2 Stuttering Invariance

Intuitively, most the reductions will result from ignoring different interleav-
ings of independent events. Stuttering invariance formalises the equivalence
between these different interleavings.

Given a set of atomic propositions {p, ... ,p,} C P, two natural models M
and M’ are strongly equivalent w.r.t. {p1,...,pn}, if they are of the same
cardinality and for all ¢ > 0 and all p € {py,... ,p,} we have w; € Z(p) iff
w: € Z(p). A point w;y; in M is stuttering w.r.t. {p1,...,p,}, if for all
p € {p1,--.,pn} w; € Z(p) iff w11 € Z(p). In other words, the points w;
and w; ;1 have the same valuation w.r.t {p1,...,p,}. The stutter-free kernel

18

MO of a model M is obtained by retaining all non-stuttering states of M.
Two states w,w’ in M?, are consecutive w < w' iff w < w' in M or there
are stuttering points wy, ... ,w; such that w < w; < -+ < wp < w' in M.

Two models M and M’ are stuttering equivalent w.r.t. {p1,...,pn}, if
their stutter-free kernels are strongly equivalent. A formula ¢ is stuttering
invariant if for all stuttering equivalent models M, M', M = paiff M’ = .

To allow the partial order methods to perform reductions we must restrict the
logic we are using, so that it cannot express properties which interfere with
the reduction. For our reductions we need stuttering invariant formulas. How
do we know if an LTL formula is stuttering invariant. Peled has presented a
procedure for determining if an LTL formula is stuttering invariant. Another
possibility is syntactically restrict LTL. Formulas containing the operator X
are not in general stuttering equivalent. The simplest example is to consider
the formula Xp and the model ({wg, w1, w2}, Z,wp), where wg < wy; < wo
and Z(p) = {wo,w;}. In this model Xp holds, but not in the stuttering
equivalent model ({wd, wy},Z°% w]). There are, however, formulas containing
the operator X which are stuttering invariant.

Define LTL — X to be the logic built from propositions p € P, boolean
connectives —, | and the reflexive until U* temporal operator.

Lemma. Any LTL — X formula is stuttering invariant.

Proof: Let 1 be an LTL — X formula, M = (U,Z,w,) a model and M° =
(U°,Z°% wQ) its stuttering free kernel w.r.t the atomic propositions in . We
show that

M = iff MO = 9.
If this can be shown the theorem follows immediately.

The proof proceeds by induction on the structure of the formula. If 1 is
a proposition then wy = ¥ iff w) = v, because wy € Z(p) iff w) € Z°p)
by stuttering invariance. If the main operator of ¢ is a boolean connective
the equivalence follows trivially from the induction hypothesis. Finally the
case where 1) = 1 U*py. If M = 9 it means that there exists a w; > wy
such that wy | ¢ and w; = ¢ for all wy < w; < wy. By the induction
hypothesis there exists w) = ;. There are now two cases: w; = wy and
wy # wy. If wy = wy we are done, because then we can infer directly from
wd = @y that M® = 9. If wy # wp, we have by the induction hypothesis
that there exists stuttering equivalent states for which w) |= ¢; As stuttering
equivalence respects the transition relation of the original model we know that

19

w) < wd < wf. Thus, M° = 1.
The converse can also be proven to hold.

Theorem. Any LTL formula which is stuttering invariant is expressible in
LTL - X.

Armed with these two theorems we can try to alleviate the state space ex-
plosion problem by generating smaller stuttering equivalent models instead
of complete state spaces when model checking LTL — X formulas.

7.3 A Partial Order Method for Elementary Nets

Next we investigate how to proceed, if we are given an elementary net N and
a LTL — X formula ¢). We are concerned with the question of efficiently gen-
erating a minimal stuttering equivalent state space w.r.t the atomic propo-
sitions in ¥. As we are working with elementary nets, the places of the net
function as natural atomic propositions.

The basic idea is that when generating the state space we aim at firing
only a subset of the enabled transitions, thus reducing the branching in the
state space and possibly generating fewer states. A notion of independence
between transitions is used as a basis for the reduction. Two transitions
are considered independent if they do not enable nor disable each other and
they commute, i.e. each firing sequence obtained by first firing the one of the
transitions and then the other must be stuttering equivalent to any sequence
where the transition are fired in reverse order.

This notion of independence is dynamic in nature and is too hard to check.
A syntactic characterisation is needed. Given a net N and a marking m, a
set of transitions T,, C T is called persistent in m iff for all ¢ € T}, and all
firing sequences tg,t1,... ,t,,t such that t; &€ T,,, there exists a stuttering
equivalent firing sequence starting with ¢. Thus, by firing only transitions in
T, all possible sequences will have their stuttering equivalent representatives
generated. For instance, the set of all enabled transitions is always a valid
persistent set.

The method described below works by over approximating persistent sets at
each marking and in this way generate reduced state spaces. One transition
is selected and all interfering transitions are added, until a valid persistent
set is reached.

20

a1 t3 t6 g2

Figure 9: Elementary net for a simple mutex protocol

The net in Figure 9 will be used as a running example in the following. It is a
simple mutual exclusion algorithm where two processes try to gain access to
the critical section. A lock place guarantees that only one process has access
at a time. We try to verify that ¢ = G—(c; A ¢2).

We first consider the transitions which are necessary for a transition ¢, i.e. the
transition which must occur before ¢ can occur. For a transition to occur all
its preplaces must be occupied. Thus any transition which puts tokens into
a preplace of t is necessary. We say that a set NEC(t,m) is necessary for t
in m, if NEC(t,m) = {ep| p € (e¢t\'m)}. In Figure 9, when m is the marking
in the figure, NEC(t2,m) = {t1}. Let NEC*(t,m) be the transitive closure
of NEC(t, m) under necessity. If ¢ is disabled in m, ¢ cannot fire before some
transitions in NEC*(t,m) fire. In the example NEC*(ty,m) = {t1,t2,t3}.

If a transition can disable another transition we say that it is in conflict with
the transition. The conflict of tais defined by

C(t)y={t| etnet' #£0}U{t}.

In Figure 9, C(t2) = {t5} while C(¢;) = 0. For the propositions appearing in
1, the order of the events may be relevant. Thus, transitions affecting these
propositions must be inspected. A transition is called visible for v if et U te
appears in ¢ In our example ¢y, t3, t5, tg are visible. The extended conflict of
t is C(t) if t is not visible and C(t) and all visible transitions otherwise.

For t' € C(t), any transition in NEC(t',m) can enable ¢. Thus, when we
compute the dependent set of ¢ it includes all transitions which are necessary
for the transitions in conflict with ¢. DEP(t,m) is any set such that for any
t' in the extended conflict of ¢t NEC(t',m) C DEP(t,m). Our approximation
must be closed under dependency. Therefore READY (m) is any set fort
which

DEP(t;,m) C READY (m), if t; € READY (m).

21

ql, g2, lock

/1 \tZ

ql q2 Iock)

t3

pl, g2, lock) (g1, p2, lock (p1, q2 lock
ST ONg N
cl,g2) (p1, p2,lock) (g1, c2 pl p2 Iock)

w42 NG

(c1, p2) (p1, c2)

t (cl p2) (pl c2

(g1, p2 lock)

Figure 10: The complete state space (left) and the reduced state space (right).

The result is summarised in the following theorem.

Theorem. For any firing sequence p of the net there exists a firing sequence
p' generated only by firing the enabled ready transitions such that p and p’
are equivalent w.r.t. all LTL-X safety properties.

Consider again the net in Figure 9. In the marking shown in the figure,
t; and t, are enabled. Both transitions have only themselves in their re-
spective extended conflicts. Any of the transitions will be a valid ready set,
because NEC(t1,m) = NEC(t4,m) = (. Figure 10 shows the reduced and
the complete state space for the net.

A state space generated only by firing ready transitions can be exponentially
smaller than the full state space. The complexity of the algorithm is cubic
in the size of the net, but average examples can be completed in linear time.
Extending the algorithm to also handle liveness properties correctly could
be done by having the algorithm compute a different set, each time a state
reached for the second time. Other logics such as CTL* — X and ACTL —
X also have their own versions of the algorithm.

References

[1] H.R. Andersen. An Introduction to Binary Decision Diagrams, available
at http://www.itu.dk/people/hra/bdd97-abstract.html, 1998.

[2] A. Biere, A. Cimatti, E. Clarke and Y. Zhu. Symbolic Model Checking
without BDDs. In W.R. Cleaveland, editor, Tools and Algorithms for the
Construction and Analysis of Systems, pp 193-206, Springer, 1999.

22

[3] R.E. Bryant. Symbolic Manipulation with Ordered Binary Decision Dia-
grams, ACM Computing Surveys 24(3), 293-317, 1992.

[4] E.M. Clarke and B-H. Schlingloff. Model Checking. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, pp 16371790,
Elsevier, 2001

23

