E. Clarke & B.-H. Schlingloff: Model Checking Chapters 6,7 (p. 1689–1711)

Completeness & Decision Procedures

Petteri Kaski

Logic = syntax + semantics

▷ Syntax

\[\text{ML} \overset{\text{def}}{=} \mathcal{P} \upharpoonright \bot \upharpoonright (\text{ML} \to \text{ML}) \upharpoonright (R)\text{ML} \]

▷ Semantics via Kripke models and frames:

- (Truth in a model) \(M \models \phi \) \(M = (U, I, w_0) \);
- (Validity in a frame) \(\mathcal{F} \models \phi \) \(\mathcal{F} = (U, I) \);
- (Universal validity) \(\models \phi \) \(\mathcal{F} \models \phi \) for all frames \(\mathcal{F} \).

“Completeness” and “Decision procedures”

▷ A logic is complete if it has a proof system that is both sound and complete.

▷ A proof system is a “syntactic” method for establishing semantic consequence, e.g.,

“if \(p \) and \(p \to q \) are true, then \(q \) must be true.”

In other words, \(q \) is a semantic consequence of \(\{p, (p \to q)\} \).

▷ A decision procedure is an algorithm that determines whether a sentence \(\phi \) is a semantic consequence of a set of sentences \(\Phi \).

▷ Not all complete logics are decidable, that is, have a decision procedure.

Global semantic consequence

▷ Let \(\mathcal{L} \) be a logic (e.g. ML, CTL, LTL) whose semantics are defined via Kripke models.

▷ Let \(\Phi \subseteq \mathcal{L} \) be a set of sentences and suppose \(\phi \in \mathcal{L} \) is a sentence.

▷ \(\phi \) is a (global) semantic consequence of \(\Phi \) if

\[\mathcal{F} \models \Phi \text{ implies } \mathcal{F} \models \phi \text{ for every frame } \mathcal{F}. \]

We indicate this by writing \(\Phi \models \phi \) (or \(\models \phi \) if \(\Phi \) is empty).

▷ \(\{p, (p \to q)\} \models q \)

▷ \(\{p\} \models [R]p \)

▷ \(\{(p \to \Box^n q) : n \in \mathbb{N}\} \models (p \to \Box^* q) \)
Proof systems

▷ A proof system P for a logic L is a syntactic method for deciding semantic consequence.

▷ We write $\Phi \vdash \phi$ if we can prove ϕ from the premises Φ (using a proof system P).

▷ A proof system need not in general be connected with the semantics of the logic.

▷ A proof system is sound if $\Phi \vdash \phi$ implies $\Phi \models \phi$.
 “Everything provable from Φ is a semantic consequence of Φ.”

▷ A proof system is complete if $\Phi \models \phi$ implies $\Phi \vdash \phi$.
 “Every semantic consequence of Φ has a proof from Φ.”

Deductive proof systems

▷ A deductive proof system for a logic L consists of a set of axioms and a set of deductive rules.

 * An axiom is simply a sentence $\phi \in L$.
 * A deductive rule is a pair $(\{\phi_1, \ldots, \phi_N\}, \psi)$, written
 $$\phi_1, \ldots, \phi_N \vdash \psi,$$
 where $\phi_1, \ldots, \phi_N \in L$ are the prerequisites and ψ is the conclusion. (The number of prerequisites is always finite.)

Provability in deductive proof systems

▷ Fix any deductive proof system P for L.

▷ A finite sequence $\phi_1, \ldots, \phi_N \in L$ is a derivation of $\phi \in L$ from the premises $\Phi \subseteq L$ if $\phi = \phi_N$ and, for every $i = 1, \ldots, N$,
 1. either ϕ_i is an axiom; or
 2. ϕ_i is a premise (i.e. $\phi_i \in \Phi$); or
 3. ϕ_i is the conclusion of a deductive rule $\psi_1, \ldots, \psi_M \vdash \phi_i$, and ψ_1, \ldots, ψ_M appear earlier in the derivation.

▷ We say that ϕ is provable from Φ (notation $\Phi \vdash \phi$) if there exists a derivation of ϕ from Φ.

Trivial examples of deductive proof systems

▷ Consider the multimodal logic ML.
 1. Take all sentences in ML as axioms.
 2. Assume the axiom set is empty.

▷ Recall that
 * a proof system is sound if $\Phi \vdash \phi$ implies $\Phi \models \phi$.
 * a proof system is complete if $\Phi \models \phi$ implies $\Phi \vdash \phi$.

▷ Is either of the “trivial” proof systems above sound?

▷ What about complete?
A sound and complete proof system for ML

(T) (Propositional tautologies)
(K) ([R] (p → q) → ([R]p → [R]q))
(MP) p, (p → q) ⊢ q
(N) p ⊢ [R]p

▷ (T) and (K) are axioms.
▷ (MP) and (N) are deductive rules.
▷ Arbitrary (but systematic) substitution of ML sentences in place of atomic propositions is allowed to occur.

Theorem. The deductive proof system for ML is sound.
Proof sketch.
▷ Let φ₁, ..., φₘ be a derivation of φₘ from the premises Φ.
▷ Let F = (U, I) be any frame for which F ⊨ Φ.
▷ Proceed by induction: if F ⊨ φⱼ for all j = 1, ..., i, conclude that F ⊨ φᵢ₊₁. Then F ⊨ φₘ holds eventually.
▷ Example: The (N) rule. Suppose that φᵢ₊₁ = [R]φⱼ, where j ≤ i. By induction hypothesis F ⊨ φⱼ. Fix any w ∈ U and consider any w' such that (w, w') ∈ I(R). Since F ⊨ φⱼ, we have (U, I, w') ⊨ φⱼ. So, (U, I, w) ⊨ [R]φⱼ because w' was arbitrary. Because w was arbitrary, F ⊨ [R]φⱼ.

Soundness

An example derivation

Let φ, ψ be arbitrary ML sentences and suppose Φ = {⟨φ → ψ⟩}. We derive ([R]φ → [R]ψ) as follows:
1. φ → ψ (GP)
2. [R] (φ → ψ) (1,N)
3. ([R] (φ → ψ) → ([R]φ → [R]ψ)) (K)
4. ([R]φ → [R]ψ) (2,3,MP)

So, {⟨φ → ψ⟩} ⊨ ([R]φ → [R]ψ).

Completeness

Theorem. The deductive proof system for ML is complete.
Proof sketch.
▷ We prove the contrapositive claim Φ ∤ φ implies Φ ∤ φ.
▷ The aim is to construct a canonical frame F₀ = (U, I) that satisfies F₀ ⊨ Φ, but for which there exists a w ∈ U such that (U, I, w) ⊭ φ
▷ Then F₀ is the counterexample that demonstrates Φ ∤ φ.
▷ The construction is based on a syntactic notion of consistency with the premises Φ.
▷ A set Ψ ⊆ ML is consistent (with Φ) if there exists no finite subset {ψ₁, ..., ψₙ} ⊆ Ψ such that Φ ⊨ ¬(ψ₁ ∧ ... ∧ ψₙ).
A consistent set Ψ is maximal if no proper extension $\Psi' \supset \Psi$ of Ψ is consistent.

Lemma (Lindenbaum). Every consistent set $\Psi \subseteq \text{ML}$ can be extended to a maximal consistent set.

Lemma. Let $\Psi \subseteq \text{ML}$ be a maximal consistent set. Then $\Phi \subseteq \Psi$ and, for every $\psi \in \text{ML}$, either $\psi \in \Psi$ or $\neg \psi \in \Psi$, but not both.

Define

$U \overset{\text{def}}{=} \{\Psi \subseteq \text{ML} : \Psi \text{ is consistent and maximal}\},$

$I(R) \overset{\text{def}}{=} \{(\Psi_0, \Psi_1) \in U \times U : \Psi_0^{[R]} \subseteq \Psi_1\},$

$I(p) \overset{\text{def}}{=} \{\Psi \in U : p \in \Psi\},$

where $\Psi^{[R]} \overset{\text{def}}{=} \{\psi : [R]\psi \in \Psi\}.$

Consequences of the completeness proof

For any premise set $\Phi \subseteq \text{ML}$ there exists a canonical frame $F_\Phi = (U, I)$ that has the following property:

$\Phi \not\vdash \phi$ if and only if $\exists \Psi \in U$ such that $(U, I, \Psi) \not\models \phi.$

\Rightarrow $\Phi \not\vdash \phi$ implies $\Phi \not\vdash \phi$ by the soundness theorem, so Ψ exists.

\Leftarrow Clear since $F_\Phi \models \Phi$ by construction.

So, it suffices to consider only the canonical frame F_Φ to determine whether $\Phi \vdash \phi$.

Unfortunately, the canonical frame is uncountably infinite, and the problem of determining whether $\Phi \vdash \phi$ for arbitrary Φ, ϕ is undecidable.

For finite Φ the problem becomes decidable. (More on this later.)

Lemma (Truth). For every $\psi \in \text{ML}$ and every $\Psi \subseteq U$, we have $\psi \in \Psi$ if and only if $\Psi \models \psi$.

So, since $\Phi \subseteq \Psi$ for every $\Psi \in U$, we have $F_\Phi \models \Phi$.

Recall that we assume $\Phi \not\vdash \phi$.

So, $\{\neg \phi\}$ must be consistent. (Otherwise $\Phi \vdash \neg (\neg \phi)$, i.e., $\Phi \vdash \phi$.)

Let $\Psi_0 \in U$ be any maximal consistent extension of $\{\neg \phi\}$.

Then, since $\neg \phi \in \Psi_0$, we have $\phi \notin \Psi_0$.

Consequently $(U, I, \Psi_0) \not\models \phi$ and hence $F_\Phi \not\models \phi$.

Monomodal logic with transitive closure.

Syntax

$\text{ML}^+_1 \overset{\text{def}}{=} \mathcal{P} \mid \perp \mid (\text{ML}^+_1 \rightarrow \text{ML}^+_1) \mid \text{X} \text{ML}^+_1 \mid \text{F}^* \text{ML}^+_1$

Semantics via (restricted) Kripke models and frames.

$X \phi \overset{\text{def}}{=} (\mathcal{X}) \phi$, $F^* \phi \overset{\text{def}}{=} (\phi \lor (\mathcal{X}) \phi)$.

Restriction on models and frames:

$I(\mathcal{X}) = I(\mathcal{X})^+,$

where $I(\mathcal{X})^+$ denotes the transitive closure of $I(\mathcal{X})$.

Syntactic abbreviations:

$\mathcal{N} \phi \overset{\text{def}}{=} \neg X \neg \phi$, $G^* \phi \overset{\text{def}}{=} \neg F^* \neg \phi.$
A sound and (weakly) complete proof system for ML^+_1

(T) (Propositional tautologies)
(K) $(\mathfrak{N}(p \rightarrow q) \rightarrow (\mathfrak{N}p \rightarrow \mathfrak{N}q))$
(Rec) $G^*p \rightarrow (p \land \mathfrak{N}G^*p)$
(MP) $p, (p \rightarrow q) \vdash q$
(N) $p \vdash \mathfrak{N}p$
(Ind) $(p \rightarrow (q \land \mathfrak{N}p)) \vdash (p \rightarrow G^*q)$

▷ (T), (K) and (Rec) are axioms.
▷ (MP), (N) and (Ind) are deductive rules.
▷ Arbitrary (but systematic) substitution of ML^+_1 sentences in place of atomic propositions is allowed to occur.

Let ϕ be an arbitrary ML^+_1 sentence and suppose that $\Phi = \{\phi\}$. We derive $G^*\phi$ as follows:

1. ϕ (GP)
2. $\mathfrak{N}\phi$ (1,N)
3. $(\phi \rightarrow (\mathfrak{N}\phi \rightarrow (\phi \rightarrow (\phi \land \mathfrak{N}\phi))))$ (T)
4. $(\mathfrak{N}\phi \rightarrow (\phi \rightarrow (\phi \land \mathfrak{N}\phi)))$ (1.3,MP)
5. $(\phi \rightarrow (\phi \land \mathfrak{N}\phi))$ (2,4,MP)
6. $\phi \rightarrow G^*\phi$ (5,Ind)
7. $G^*\phi$ (1,6,MP)

ML^+_1 is noncompact

▷ Let $\Phi = \{(p \rightarrow \mathfrak{N}^nq) : n \in \mathbb{N}\}$ and $\phi = (p \rightarrow G^*q)$.
▷ Now $\Phi \vdash \phi$, but for every finite $\Phi' \subset \Phi$ it holds that $\Phi' \not\vdash \phi$.
▷ Consider any deductive proof system for ML^+_1 that is sound.
▷ Derivations are finite sequences that in particular use a finite number of premises. Consequently, if $\Phi \vdash \phi$, then there exists a finite $\Phi' \subset \Phi$ such that $\Phi' \vdash \phi$.
▷ Since the proof system is sound, $\Phi' \not\vdash \phi$, a contradiction.
▷ So, $\Phi \not\vdash \phi$.

ML^+_1 admits no deductive proof system that is both sound and complete.

▷ The notion of completeness has to be relaxed.

Definition. A deductive proof system is *weakly complete* if $\Phi \vdash \phi$ implies $\Phi \vdash \phi$ whenever Φ is finite.

Theorem (Deduction). Let $\psi, \phi \in \text{ML}^+_1$. Then, $\psi \vdash \phi$ if and only if $\vdash G^*\psi \rightarrow \phi$.

Proposition. A deductive proof system for ML^+_1 is weakly complete if and only if $\vdash \phi$ implies $\vdash \phi$.

petteri.kanki@hut.fi
Theorem. The ML^+_1 proof system is weakly complete.

Proof sketch.

\(\Rightarrow \) We again prove the contrapositive claim \(\not \vdash \phi \) implies \(\not \vdash \phi \).

\(\Rightarrow \) It suffices to construct a model \(\mathcal{M} = (U, \mathcal{I}, w) \) such that \(\mathcal{M} \not \models \phi \).

\(\Rightarrow \) The model is again based on syntactic consistency.

\(\Rightarrow \) A set \(\Psi \subseteq ML^+_1 \) is consistent if there exists no finite subset \(\{\psi_1, \ldots, \psi_n\} \subseteq \Psi \) such that \(\vdash \neg(\psi_1 \land \cdots \land \psi_n) \).

Define

\[
U \overset{\text{def}}{=} \{ \Psi \subseteq \text{ESF}(\phi) \cup \neg \text{ESF}(\phi) : \Psi \text{ is consistent and maximal} \}, \\
\mathcal{I}(\neg) \overset{\text{def}}{=} \{ (\Psi_0, \Psi_1) \in U \times U : \Psi_0^X \subseteq \Psi_1 \}, \\
\mathcal{I}(p) \overset{\text{def}}{=} \{ \Psi \in U : p \in \Psi \},
\]

where \(\Psi^X \overset{\text{def}}{=} \{ \neg \psi : -X\psi \in \Psi \} \).

\(\Rightarrow \) Lemma (Truth). For every \(\psi \in \text{ESF}(\phi) \) and every \(\Psi \in U \), we have \(\psi \in \Psi \) if and only if \(\Psi \models \psi \).

\(\Rightarrow \) Recall that we assume \(\vdash \phi \).

\(\Rightarrow \) So, \(\{\neg\} \subseteq \text{ESF}(\phi) \) must be consistent.

\(\Rightarrow \) Let \(\Psi_0 \in U \) be any maximal consistent extension of \(\{\neg\} \).

\(\Rightarrow \) Then, since \(\neg \phi \in \Psi_0 \), we have \((U, \mathcal{I}, \Psi_0) \not \models \phi \).

\(\Rightarrow \) Let \(\phi \in ML^+_1 \). The set of extended subformulas of \(\phi \), denoted \(\text{ESF}(\phi) \), is the minimal set of formulas that satisfies

1. \(\phi \in \text{ESF}(\phi) \).
2. If \((\psi_1 \rightarrow \psi_2) \in \text{ESF}(\phi) \), then \(\psi_1 \in \text{ESF}(\phi) \) and \(\psi_2 \in \text{ESF}(\phi) \).
3. If \(X\psi \in \text{ESF}(\phi) \), then \(\psi \in \text{ESF}(\phi) \).
4. If \(F^*\psi \in \text{ESF}(\phi) \), then \(\psi \in \text{ESF}(\phi) \) and \(X F^*\psi \in \text{ESF}(\phi) \).

\(\Rightarrow \) The set \(\text{ESF}(\phi) \) is finite for every \(\phi \in ML^+_1 \).

\(\Rightarrow \) A consistent set \(\Psi \subseteq \text{ESF}(\phi) \cup \neg \text{ESF}(\phi) \) is maximal if either \(\psi \in \Psi \) or \(\neg \psi \in \Psi \) for every \(\psi \in \text{ESF}(\phi) \).

\(\Rightarrow \) Lemma. Every consistent set \(\Psi \subseteq \text{ESF}(\phi) \cup \neg \text{ESF}(\phi) \) can be extended to a maximal consistent set.

Consequences of the completeness proof

\(\Rightarrow \) Let \(\phi \in ML^+_1 \). Then, \(\not \vdash \phi \) if and only if \(\exists \) finite \((U, \mathcal{I}, w) \) such that \((U, \mathcal{I}, w) \not \models \phi \).

\(\Rightarrow \) \(\not \vdash \phi \) implies \(\not \vdash \phi \) by the soundness theorem, so \((U, \mathcal{I}, w) \) exists.

\(\Rightarrow \) \(\not \vdash \phi \) implies \(\not \vdash \phi \).

\(\Rightarrow \) The size of the finite model is bounded by \(|U| \leq 2^{|\text{ESF}(\phi)|} \).

\(\Rightarrow \) The problem of determining whether \(\vdash \phi \) is decidable:

Exhaustively search through all models of size \(\leq 2^{|\text{ESF}(\phi)|} \).
Other logics

- Sound and (weakly) complete deductive proof systems exist for
 - CTL, LTL with/without past operators.
 - LTL with natural models.
 - qTL, μTL.

Decision procedures

> A decision procedure for a logic \(L \) is an algorithm that determines for a finite \(\Phi \subseteq L \) and a \(\phi \in L \) whether \(\Phi \models \phi \).

> In practice, the algorithms determine satisfiability.

- \(\Phi \) is satisfiable subject to premises \(\Phi \) if there exists a frame \(\mathcal{F} = (U, \mathcal{I}) \) and a state \(w \in U \) such that \(\mathcal{F} \models \Phi \) and \((U, \mathcal{I}, w) \models \phi \).

> \(\Phi \models \phi \) if and only if \(\neg \phi \) is unsatisfiable subject to \(\Phi \).

ML decision procedure (1/3)

> Let \(\Phi \subseteq ML \) be finite and let \(\phi \in ML \).

> Denote by \(SF \) the set of all subformulas of the formulas in \(\Phi \cup \{ \phi \} \).

> A subset \(w \subseteq SF \) is propositionally consistent if
 1. \(\bot \not\in w \); and
 2. if \((\psi_1 \rightarrow \psi_2) \in SF \), then
 \((\psi_1 \rightarrow \psi_2) \in w \) if and only if \(\psi_1 \not\in w \) or \(\psi_2 \in w \).
 3. if \(\neg \psi \in SF \), then \(\neg \psi \in w \) if and only if \(\psi \not\in w \).
 4. if \((\psi_1 \lor \psi_2) \in SF \), then
 \((\psi_1 \lor \psi_2) \in w \) if and only if \(\psi_1 \in w \) or \(\psi_2 \in w \).
 5. if \((\psi_1 \land \psi_2) \in SF \), then
 \((\psi_1 \land \psi_2) \in w \) if and only if \(\psi_1 \in w \) and \(\psi_2 \in w \).

ML decision procedure (2/3)

> Take as \(U \) the set of all \(w \subseteq SF \) that satisfy
 1. \(w \supseteq \Phi \); and
 2. \(w \) is propositionally consistent.

> Take \(I(R) = U \times U \). (Only \(R \in R \) that appear in \(SF \) need to be considered.)

> Now remove repeatedly bad points and bad arcs until none exist.

> If \(U \) contains a state \(w \) with \(\phi \in w \), then output "satisfiable";
 otherwise output "unsatisfiable."
ML decision procedure (3/3)

- **Bad arcs and points are defined as follows:**
 * An arc \((w, w') \in \mathcal{I}(R)\) is bad if \(\langle R \rangle \psi \notin w \) but \(\psi \in w'\).
 * A point \(w \in U\) is bad if \(\langle R \rangle \psi \in w\) but \(\psi \notin w'\) for all \(w' \in U\) such that \((w, w') \in \mathcal{I}(R)\).

- **The above procedure is a sound and weakly complete proof system for ML.**
 * For finite \(\Phi\), let \(\Phi \vdash \phi\) if and only if the procedure outputs "unsatisfiable" on input \(\Phi, \neg \phi\).
 * For finite \(\Phi\), \(\Phi \vdash \phi\) if and only if \(\Phi \vdash \phi\).

ML\(_\) decision procedure (2/2)

- **Recall ML\(_\) axiom**
 \[
 (G^* q \rightarrow (q \land \neg G^* q)) \quad \rightarrow \quad ((q \lor X F^* q) \rightarrow F^* q)
 \]

- **A point \(w \in U\) is bad if**
 1. \(X \psi \in w\) but \(\psi \notin w'\) for all \(w' \in U\) such that \((w, w') \in \mathcal{I}(\sim)\); or
 2. \(F^* \psi \notin w\) but \(\psi \in w\); or
 3. \(F^* \psi \in w\) but \(\psi \notin w\) and no point reachable from \(w\) contains \(\psi\).

- **An arc \((w, w') \in \mathcal{I}(\sim)\) is bad if**
 1. \(X \psi \notin w\) but \(\psi \in w'\); or
 2. \(F^* \psi \notin w\) but \(F^* \psi \in w'\).

Efficiency and implementation

- **The number of propositionally consistent sets that contain \(\Phi\) in general exponential (in \(|\mathcal{S}|\)).**
- **The ML and ML\(_\) decision algorithms require worst case exponential time.**
- **A large number of propositionally consistent sets need to be stored.**
- **Either bottom-up or top-down construction possible**
 * top-down: remove states and arcs until a satisfying model is reached.
 * bottom-up: add states and arcs until a satisfying model is reached. (Problem: what to add \(\Rightarrow\) backtracking)
- **Bottom-up more suitable for linear time (and natural models).**
Satisfiability algorithms for natural models

▷ Natural model: \(((w_0, w_1, \ldots), I, w_0) \), where \(w_i \sim w_{i+1} \) for all \(i \).

▷ Deterministic monomodal logic.
 * One modal operator (e.g. \(\Box \)).
 * Each state has at most one successor.

▷ Satisfiability of \(\phi \) subject to \(\Phi \) and linear models:
 * Construct \(w_0, w_1, \ldots \) step by step using backtracking search.
 * Initial state \(w_0 \):
 Consider all prop. consistent \(w_0 \subseteq SF \) with \(\Phi \subseteq w_0 \) and \(\phi \in w_0 \).
 * Search step \(i \sim i + 1 \):
 Given \(w_i \subseteq SF \) as input, attempt to construct a successor \(w_{i+1} \subseteq SF \) so that all future obligations are fulfilled.

Obligations in constructing \(w_{i+1} \)

1. Positive future obligations: \(\psi \in w_{i+1} \) for all sentences \(X\psi \in w_i \).
2. Negative future obligations: \(\psi \notin w_{i+1} \) for all sentences \(\neg X\psi \in w_i \).
3. Premises: \(\Phi \subseteq w_{i+1} \).
4. Consistency: \(w_{i+1} \) must be propositionally consistent.

Termination

▷ No positive obligations \(\Rightarrow \) the sequence \((w_0, \ldots, w_i) \) is a model.
▷ \(w_{i+1} \) is identical to a \(w_j \) constructed earlier \(\Rightarrow \) the sequence \((w_0, \ldots, w_{j-1}) \circ (w_j, \ldots, w_i) \) is a model.
▷ Finite number of \(w \subseteq SF \) \(\Rightarrow \) algorithm always terminates.