T-79.298 Postgraduate Course in Digital Systems Science:

Completeness and Decision Procedures for
Multimodal Logic and (Restricted) Temporal Logic

Petteri Kaski
petteri.kaski@hut.fi

November 26, 2001

1 Introduction

A logic can be viewed as a formal system that has
two components: (a) a language in which to state
properties (the syntaz); and (b) a means for attach-
ing a notion of truth and validity to the sentences
of the language (the semantics). Also required is
the concept of entailment for determining whether
a sentence is a semantic consequence of a collection
of sentences, called the premises. For example, if
the premises are “today it rains” and “a rainy day
is followed by a sunny day”, then the semantics of
the language allows us to decide whether “tomor-
row is sunny” is entailed by the premises.

A proof system for a logic is a syntactic method
for deriving sentences of the language out of a given
collection of premises. For a proof system to be
of use in logical reasoning, that is, in establish-
ing or disproving semantic consequence, the set of
sentences derivable from a given set of premises
must parallel the semantic notion of entailment.
Specifically, a proof system is sound if every sen-
tence derivable from a collection of premises is also
semantically entailed by the premises. In other
words, if a proof system is sound, then the fact
that we can derive “tomorrow is sunny” from the
premises really implies that tomorrow is sunny. On
the other hand, a proof system is complete if every
sentence entailed by the premises is also derivable
from the premises using the proof system.

In the model checking context our interest lies
in establishing the existence of proof systems that
are sound and complete for the modal and tempo-

ral logics commonly employed in system verifica-
tion. Often the study of such proof systems enables
one to derive algorithmic decision procedures that
enable the automation of logical reasoning. Often
such decision procedures in turn form a basis for
efficient model checking algorithms.

This text is an expository treatment of proof sys-
tems and decision procedures for multimodal and
temporal logics based on Chapters 6 and 7 of the
survey article Model Checking by E. Clarke and
B.-H. Schlingloff [1]. Additional influence was ob-
tained from [2, 3, 7] and a set of old lecture notes
from the course “Tik-79.146 Logic in Computer Sci-
ence: Special Topics I” lectured by Professor Ilkka
Niemela at HUT.

The organization of this text is as follows. The
first two sections consist of the necessary prelimi-
naries. Section 2 presents the syntax and semantics
of the two logics studied. The first logic considered
is standard multimodal logic on arbitrary Kripke
models. The second logic is a simplified temporal
logic that contains an operator for reasoning about
the “future” but lacks an “until”-operator. Section
3 defines concepts related to formal proof systems.
The emphasis of this text is on Sections 4 and 5,
where we present deductive proof systems for the
two logics considered, and establish their sound-
ness and completeness. The subsequent treatment
is devoted to algorithmic decision procedures for
the two logics. Section 6 derives generic decision
procedures for the two logics based on the finite
model property. Section 7 sketches a tableau-based
decision method for the restricted temporal logic on

natural models. Finally, there is an appendix that
contains proofs of some technical results that are
required in the completeness proofs.

2 The two logics studied

2.1 Multimodal logic

Let P be a nonempty set of atomic propositions
and let R be a nonempty set of accessibility relation
symbols. The language of multimodal logic consists
of all finite sentences that are defined recursively as
follows

(i) Every atomic proposition p € P is a sentence.
(i)
(iii)

The symbol L is a sentence.

If ¢ and ¢ are sentences, then (¢ — 1) is a
sentence.

(iv)

If R € R is a relation symbol and ¢ is a sen-
tence, then (R)¢ is a sentence.

The definition above can be expressed more com-
pactly using the formal grammar below.

def

ML % P|L|(ML— ML) |(R)ML. (1)

We assume that both P and R are at most count-
able sets to guarantee that the sentences formed
using (1) constitute a set that is at most countable.
(This property will be required later in Lemma 4.9.)
In what follows we shall denote by ML the set of
all finite sentences constructed according to (1).

For ¢,19 € ML we use the following standard
syntactic abbreviations:

¢ (¢ 1) @V) E (~p =)
(A Y) E ~(=pV) [Rl¢p < ~(R)~¢
T

We emphasize that these abbreviations are indeed
for syntactic convenience only, and that the real
ML sentences denoted by the abbreviations can
always be substituted in place of the abbreviations
without loss of generality in what follows.

The semantics of multimodal logic is defined
through Kripke models, which attach a concrete
interpretation to each ML sentence with respect
to which semantic notions (e.g. truth, validity, en-
tailment) can be evaluated.

Definition 2.1 A Kripke model for ML is a triple
M = (U,Z,wg), where

(i) U is a nonempty set of states;
(ii) Z is a function that associates

> an accessibility relation Z(R) C U x U to
each relation symbol R € R; and

> a subset Z(p) C U to each proposition
symbol p € P.

(iii) wo € U is the current state.

If we omit the current state wg from a model M =
(U, Z,wp), then the resulting structure F = (U, T)
is called a frame.

We warn the reader that the above definitions for
a Kripke model and a frame are somewhat nonstan-
dard. We use them nevertheless for compatibility
with [1].

Definition 2.2 (Truth) The truth of an ML sen-
tence ¢ in a Kripke model M = (U, Z, wy) is defined
recursively by the structure of the sentence. We
write M |= ¢ if ¢ is true in M; otherwise ¢ is false
and we write M [~ ¢.

(i) For every p € P, we have M |= p if and only
if wo € Z(p); and

Always M £ L1; and

For every 91,%, € ML, we have M = (¢; —
9) if and only if either M B~ 91 or M | 4s;

and

For every ¢ € ML, we have M | (R)¢ if
and only if there exists a w; € U such that
(wo,w1) € Z(R) and (U,Z,w;) E .

If a frame F = (U,Z) can be understood from the
context, we shall write only w |= ¢ to indicate that
(U, Z,w) ¢ forweU.

We make a slight digression here and remark that
sometimes it is convenient to use an alternative for-
mulation of ML in which the operator (R) is re-
placed with its dual operator [R]. In this case every
sentence of the form (R)¢ is a syntactic abbrevia-
tion for —[R]—¢, and (iv) in the above definition is
replaced by (iv’) below.

(iv’) For every ¢ € ML, we have M |= [R]¢ if and
only if for every w; € U satisfying (wp,w;) €
Z(R) it holds that (U,Z,w1) = .

(This alternative formulation will be more conve-
nient to use in Section 4.)

Informally, validity in logic extends the notion
of a sentence being true locally to a global context.
For example, recall that in propositional logic valid-
ity simply means that a sentence is true in all truth
valuations. In modal logic the situation is more in-
volved due to the additional structure present in
the model. To keep things relatively simple, in this
text we will only consider (a) validity in a fixed
frame and (b) validity with respect to the class of
all models .# applicable to a logic. For ML the
class .# is the class of all Kripke models. These
concepts are formalized in the following definition.

Definition 2.3 (Validity) An ML sentence ¢ is
valid in a frame F = (U,T), written F | ¢, if
(U, Z,w) | ¢ for every w € U. If M |= ¢ holds for
all models M in .#, then we say that ¢ is (univer-
sally) valid, written = ¢.

The “dual” concepts for validity are satisfiability
unsatisfiability.

Definition 2.4 (Satisfiability) An ML sentence
is satisfiable if there exists a model in which the
sentence is true. A sentence ¢ is unsatisfiable if
it has no satisfying model (in other words, —¢ is
valid).

Akin to validity, the notion of logical consequence
has several variations in modal logic. This text
uses a global form of consequence (that is, validity
of the premises in a frame implies validity of the
conclusion in the frame) with respect to the class

M.

Definition 2.5 (Semantic consequence) Let
¢ € ML be a sentence and suppose ® C ML is
a set of sentences. Then, ¢ is a consequence of
®, written & IF ¢, if every frame that validates
every sentence in ® also validates ¢. The sentences
in ® are in this context called premises and the
sentence ¢ is the conclusion.

Observe that no restrictions were placed on ®. In
particular, it can be infinite as well as empty. In

the case that ® is empty we write simply IF ¢; note
that this coincides with the universal validity of a
sentence, that is, IF ¢ if and only if |= ¢.

2.2 Monomodal logic with transitive
closure

The accessibility relations of multimodal logic can
be viewed as giving the immediate successor state
of a state in the Kripke model at hand, that is, w’
is an immediate R-successor state of w if and only
if (w,w') € Z(R). Being able to reason with imme-
diate successor states is often not enough, however.
What is required is the ability to state and ver-
ify properties that hold for all the successor states
of a given state. Formally, this amounts to saying
that a property must hold in all states which are
accessible from w through the transitive closure of
Z(R).

Definition 2.6 Let A C UxU be a binary relation
on U. The transitive closure of A is the intersection
of all S C U x U that satisfy

(i) ACS;and

(ii) for every wo,w;,ws € U, if (wg,w1) € S and
(w1, ws) € S, then (wg,ws) € S.

We denote the transitive closure of A by A™T.

An equivalent definition for transitive closure is
reached if we define AT as the set of all (w,w') €
U x U for which there exists a finite sequence
wi,...,w, € U that satisfies (a) wy = w, (b)
w, = w', and (¢) (w;, w;y1) € A holds for all
i=1,...,n — 1. This latter definition will be em-
ployed in the remainder of this text. (The equiv-
alence proof for the two definitions is left as an
illustrative exercise for the reader.)

We incorporate transitive closure into multi-
modal logic by performing the following modifica-
tions to the syntax and semantics of ML. First,
we shall consider only monomodal logic, that is, a
modal logic with a single accessibility relation. This
simplifies the treatment without significant loss in
generality.! Let us denote this accessiblity rela-
tion by the symbol < and its transitive closure by

!The reader is invited to consider how the monomodal
proof systems and decision procedures presented later in this
text could be extended to cover the multimodal logic with
transitive closure and universal accessibility presented in [1,
Sec. 2.2].

<. Thus, the modification to the syntax of ML
simply consists of fixing R = {<,<}. The main
modification is a semantical one. Namely, we re-
strict the class of Kripke models .# with respect
to which the truth, validity, and entailment of sen-
tences are evaluated to the class of models that fix
the interpretation of < as

I(<) ¥ ()" 2)

We shall call the logic that results from these mod-
ifications ML .

We remark that incorporating (2) into the logic
with the above restrictions changes the expressivity
of the logic in a fundamental way. We shall see
some consequences of this (e.g. noncompactness)
later.

To simplify the notation in what follows, we shall
adopt the standard syntactic abbreviations listed
below.

def def

Xo € (<), Mo < =X,
Fto ¥ (<)g, F*¢ & (¢ VF¢),
Gt Ftop, G*¢% -Frg.

It is straightforward to verify from the semantics of
these operators that X, FT is not the only combina-
tion which is sufficient to describe the six operators
above. For example, either X, G* or X, F* can be
used instead.

To further simplify the notation when a frame
F = (U,7) has been fixed, we shall write sim-
ply w < w' (respectively, w < w') to indicate
(w,w") € Z(<) (respectively, (w,w') € Z(<)) for
states w,w’ € U. The notation w < w' is used to

indicate verbatim “either w = w' or w < w'”.

3 Proof systems

In this section we define proof systems in an ab-
stract setting to illustrate their syntactic nature.
The following two sections will then present real-
world proof systems for the logics ML and ML .

3.1 Deductive proof systems

We start by defining deductive proof systems with-
out fixing any particular logic on the sentences of
which we operate. So, let L be any nonempty set
(of sentences).

Definition 3.1 (Deductive proof system) A
deductive proof system (alternatively, a Hilbert-
style proof system) for L consists of a set of axioms
and a set of deductive rules, where

(i) the set of azioms is a subset of L; and

(il) a deductive rule, written ¢q,... ,¢np b 9, con-
sists of a finite nonempty set of prerequisite
sentences ¢1,...,¢0n € L and a conclusion
sentence 1) € L.

The previous definition was presented to emphasize
the syntactic nature of a deductive proof system: It
is simply a construct built from the sentences in L
without any reference to possible semantics of the
sentences. If there is a connection between the
proof system and the semantics of the sentences,
then it has to be explicitly demonstrated.

A deductive proof system does not yet allow us to
prove anything. What is required is the concept of
a proof. Before presenting the following definitions
we emphagize that everything is still performed en-
tirely on a syntactic level. That is, we only ma-
nipulate elements of an arbitrary nonempty set L
according to a proof system for L without attach-
ing any semantic notions (e.g. truth or validity) to
the sentences.

Definition 3.2 (Proof) Let L be a nonempty set
of sentences and fix a deductive proof system & for
L. A finite sequence of sentences ¢,...,%nN is a

proof of ¥ € L if
(i) ¥ =¢n; and

(ii) for every i = 1,..., N, the sentence ¢; is (a)
an axiom or (b) the conclusion of a deductive
rule whose prerequisite sentences ¢1,... , ¢
appear earlier in the sequence. (More formally,
there exist j1,... ,jm € N such that, for every
k=1,...,M,both 1 <j, <iand ¢ =1j,.)

Definition 3.3 (Provability) Let L be a
nonempty set of sentences and fix a deductive
proof system & for L. A sentence 9y € L is
provable, written 1, if there exists a proof for 1.

The following two examples illustrate that provabil-
ity can vary greatly depending on the proof system.

2Formally we may treat deductive rules as an ordered

pairs ({¢1,...,érm1},v), where {¢1,... ,¢p} C L is finite
and nonempty, and 9 € L.

Example 3.4 Suppose a deductive proof system
for L has an empty axiom set. Then, no sentence
¢ € L is provable.

Example 3.5 Suppose a deductive proof system
for L has all sentences in L as axioms. Then, every
¢ € L is provable in this system since ¢ is an axiom
and admits a proof ¢ = ¢;.

Definition 3.6 (Derivation) Let L be a
nonempty set of sentences and fix a deduc-
tive proof system & for L. A finite sequence of
sentences 91, ... ,¥N is a derivation of ¢ € L from
a set of premises ® C L if

(i) ¥ = ¢n; and

(ii) foreveryi=1,...,N,the sentence v; is (a) an
axiom, (b) a premise, or (c) the conclusion of
a deductive rule whose prerequisite sentences
¢1,---,0p appear earlier in the sequence.
(More formally, there exist ji,...,ju € N
such that, for every k = 1,...,M, both 1 <

jr <iand ¢ = 4y,.)

Definition 3.7 (Provable consequence) Let L
be a nonempty set of sentences and fix a deductive
proof system for L. A sentence ¢ € L is a provable
consequence of ® C L, written @ - ¢, if there exists
a derivation of ¢ from the premises in ®.

3.2 Soundness and completeness

The last section considered deductive proof systems
as syntactic objects only. In this section we attach
the syntactic notions of provability and provable
consequence to the semantic notions of validity and
semantic consequence.

Fix a logic L and a (not necessarily deductive)
proof system & for the logic. Recall that the se-
mantics of a logic allows us to distinguish which
sentences ¢ € L are valid (written IF ¢) and which
are semantic consequences of a set of premises
® C L (written ® IF ¢). On the other hand, the
proof system & provides us with analogous syn-
tactic concepts of provability (- ¢) and provable
consequence (® + ¢).

For a proof system to be of significant use in log-
ical reasoning, it is certainly desirable to require
that provable consequence always implies seman-
tic consequence. In other words, if we can prove a

sentence is a consequence of the premises, then it
really is a consequence of the premises in the se-
mantic sense.

Definition 3.8 (Soundness) A proof system &
for a logic L is sound if, for all ® C L and ¢ € L,
® - ¢ implies @ IF ¢.

On the other hand, the usefulness of a proof sys-
tem is significantly decreased if the nonexistence of
a derivation is insufficient to demonstrate that se-
mantic consequence does not hold. In other words,
it is desirable that semantic consequence always im-
plies provable consequence.

Definition 3.9 (Completeness) A proof system
& for a logic L is (strongly) complete if, for all
$CLand g €L, ® I ¢ implies ® - .3

Both soundness and completeness are required for a
proof system to be truly useful. To give two patho-
logical examples of useless proof systems from a se-
mantic viewpoint, consider Examples 3.4 and 3.5,
where the former proof system is sound and the
latter is complete.

4 Deductive proof system for
ML

In this section we give a deductive proof system
for multimodal logic ML and prove that it is both
sound and complete.

As a preliminary we shall formalize the concept
of substituting sentences in place of atomic proposi-
tions in a sentence. Let 7 : P — ML be a mapping
that associates to each atomic proposition p € P
an ML sentence 7(p). Then, 7 induces a mapping
7 : ML — ML defined recursively by the structure
of a sentence:

(i) #(p) & 7(p) for all p € P.

F(L) €.

def

Wy = ¢2)) =
¢17¢2 € ML.

3We shall later encounter a weaker form of completeness
in which the set ® is restricted to be finite.

(F(p1) — 7(1hg)) for all

(iv) T(R)Y) =
R.

(R)7 () for all vy € ML and R €

Definition 4.1 Let ¢, € ML. We say that ¢
has been constructed from ¢ by substitution if there
exists a 7 : P — ML such that ¢ = 7(¢).

Example 4.2 Let P = {a,b} and define 7 : P —
ML by setting 7(a) = (a — b) and 7(b) = (b — 1).
Then,

Yv=_(a—=b) = (b= 1))

has been constructed from ¢ = (a — b) by substi-
tution since 7(¢) = 1.

We now proceed to discuss the deductive proof
system for ML. Recall that a deductive proof sys-
tem consists of a set of axioms and a set of deduc-
tive rules.

The ML proof system has two types of axioms.
Axioms of the first type consist of all sentences con-
structible from propositional tautologies* by sub-
stitution. The following example illustrates axioms
of the first type.

Example 4.3 Suppose that p € P. Then, (p — p)
is clearly a propositional tautology. Take R € R.
Then, ([R]p — [R]p) is an axiom constructed from
a propositional tautology by substitution 7(p) =
[Rlp.

Axioms of the second type consist of sentences con-
structible by substitution from sentences of the
form ([R)(p — q) — ([Rlp — [R]q)), where p,q € P
and R € R are arbitrary.

The ML proof system has two types of deduc-
tive rules. First is the standard modus ponens rule
that allows us to deduce the conclusion ¢ from the
prerequisites p and p — ¢, where p,q € P. The sec-
ond rule type, also known as the necessitation rule,
allows us to conclude [R]p from p for any p € P
and R € R. We again allow arbitrary substitutions

4Recall that a propositional tautology is a sentence of
propositional logic that is true in all truth valuations of
propositional logic. For the purposes of this text it suffices
to define a propositional tautology as an ML sentence that

(i) does not contain either of the modal operators [R] and
(R) for any R € R; and

(ii) is universally valid (see Definition 2.3).

7 : P = ML to occur in the deductive rules, as
long as the same substitution 7 is applied to all
prerequisite sentences and to the conclusion.

To summarize, we may express the deductive
proof system for ML briefly as:

(T) (Propositional tautologies)
(K) ([Rl(p = q) — ([E]p — [R]q))
(MP) p, P=>q kg

(N) pF[Rlp,

where it is understood that arbitrary ML sentences
can be substituted in place of the atomic proposi-
tions p,q € P.

4.1 Examples

Let us now present some derivations that illustrate
how the proof system is used.

Example 4.4 Let ¢, be arbitrary ML sentences
and suppose ® = {(¢ — ¢)}. We derive [R]¢p —
[R]Y as follows:

1. ¢ =9 (GP)

2. [R](¢ =) (1,N)

3. ([R](¢ — ¢) = ([R]¢ = [R]Y)) (K)

4. ([R]¢ — [R]y (2,3,MP)

Observe that the right hand side column in the
derivation illustrates which rule has been applied
to deduce the sentence at each row. For example,
(GP) indicates that the rule is a global premise,
(1,N) indicates that the sentence is deduced from
sentence 1 of the derivation using the necessitation
rule, (K) indicates that the sentence is an axiom,
and (2,3,MP) indicates that the sentence is deduced
from sentences 2 and 3 using the modus ponens
rule.

Let us consider a slightly more complex deriva-
tion.

Example 4.5 Let ¢, be arbitrary ML sentences
and suppose & = {(¢ — ¢)}. We derive ((R)¢p —
(R)) as follows:

1. ¢ = (GP)

2. ((¢ =) = (¢ = —9)) (T)

3. (_"Qb - _'¢) (1727MP)
4. [R](—¢ — —¢) (3,N)

5. ([B](—¢ = —¢) = ([R]~¢ — [R]-¢)) (K)

6. ([R]=¢ — [R]-¢) (4,5,MP)

7. ([Bl~¢ = [R]-¢) —

(R~ — ~[R}) 0
8. (-(R}~6 - [R]v) (6,7.MP)
9. ((B)9 — (R)Y) (8.0

Here (T) denotes an axiom obtained by substitu-
tion from a propositional tautology. The descrip-
tion (8,Def) indicates that the sentence is equiv-
alent to sentence 8 by definition (in other words,
sentence 9 is a syntactic abbreviation of sentence
8).

As the reader can probably observe, certain intu-
ition is required in determining the correct axioms
that produce a derivation for a sentence. Indeed,
as far as the present author is aware, there exists
no efficient algorithm that produces a Hilbert-style
derivation for a fixed target sentence ¢. Luckily
enough, we shall later in this text encounter proof
systems that can be automated more efficiently.

4.2 Soundness and completeness

In what follows we shall prove that the presented
deductive proof system for ML is both sound and
complete. Typically for such proofs, the soundness
proof is straightforward, whereas the completeness
proof is more involved.

Theorem 4.6 The presented deductive proof sys-
tem for ML is sound.

Proof. Let ® C ML be a set of premises and let
¢ € ML. Suppose that ¢1,... ,¢n is a derivation
of ¢ from ®. Recall that ® I ¢ holds if every frame
F = (U,Z) that validates every sentence in ¢ also
validates ¢. Fix an arbitrary frame F = (U,Z) in
which every sentence in @ is valid. Our task is to
show that F | ¢n. We proceed inductively by
showing that if 7 = ¢; for all j = 1,...,i —1,
then it must be that F |= ¢;. Thus, F | ¢n, and
since F was arbitrary, we have & I ¢.

Suppose that F |= ¢; holds for all j =1,... ,i—
1. Since each sentence in a derivation is either (a)
an axiom, (b) a premise or (c) the conclusion of a
deductive rule, it suffices to establish F |= ¢; case
by case.

Clearly, F = ¢; holds by assumption if ¢; is a
premise.

If ¢; is an axiom built from a propositional tau-
tology by substitution, then it is clear by Definition

2.2 that ¢; is valid in every frame. So, F |= ¢; in
particular.

A similar result is easily verified for axioms of
type (K): Let 1,12 be arbitrary ML sentences
and suppose that

¢i = ([R](¢1 = ¢2) = ([R]1 — [Ry2)).

Fix an arbitrary Kripke model M’ = (U', 7', wy).
If either M' B~ [R](¢1 — 12) or M' [= [R]yn,
then trivially M' E ¢;. If M' E [R](Y1 —
¥2) and M' |= [R]¢n, then Definition 2.2 allows
us to conclude that both (U',Z',w]) = %1 and
(U, 7", w}) E (1 = 1)2) hold for every wj € U’
such that (w{,wi) € U'. Consequently, we must
have (U',Z',w}) = 12 and M' = [R]ip2. So, M' =
¢; holds, and since M’ was arbitrary, F = ¢; must
hold in particular.

It remains to show that the conclusion of a de-
ductive rule is valid in F given that its prereq-
uisites appear earlier in the derivation. For the
modus ponens rule this is clear: Since F | ¢;
and F = (¢; = ¢;) by the induction hypothe-
sis, we must have F |= ¢; since we cannot have
(U,Z,w) £ ¢; for any w € U.

For the necessitation rule suppose that ¢; =
[R]¢;. Again by the induction hypothesis F = ¢;,
or equivalently, w |= ¢; for all w € U. This holds
in particular for every R-successor state of every
state, so F = [R]¢;. []

Theorem 4.7 The presented deductive proof sys-
tem for ML is strongly complete.

Proof. Let ® C ML be a set of premises and let ¢ €
ML. We prove the contrapositive version of the
claim, that is, if ® I ¢, then ® |} ¢. In other words,
from the assumption @ I/ ¢ we have to construct a
frame Fg in which every sentence in @ is valid but
which contains a state wo € U such that wo [~ ¢.
The frame Fg will depend on ® only, so we shall
call it the canonical frame for ®.

The frame is based on the syntactic notion of
consistency with the premises ®:

Definition 4.8 A set ¥ C ML is consistent (with
®) if there exists no finite subset {¢1,... ,¥n} C
¥ for which ® F =(¢1 A ... A9Yn). A consistent
set ¥ C ML is mazimal if every proper extension
¥’ D ¥ is inconsistent.

Note that if ® is inconsistent with itself, then ®
1. Since (L — ¢) is an axiom, ¢ F ¢ holds trivially
if ® is inconsistent. In what follows we assume that
® is consistent with itself. (We remark that this
assumption is required by the subsequent lemmata,
although this is not explicitly stated.)

The following two lemmata enable the construc-
tion of the canonical frame Fg using maximal con-
sistent sets. We postpone the proofs of these lem-
mata to the appendix so that their details do not
clutter the top-level proof.

Lemma 4.9 (Lindenbaum’s lemma) FEvery
consistent set ¥ C ML can be extended to a
mazximal consistent set.

Lemma 4.10 Let ¥ C ML be a mazximal consis-
tent set. Then ® C V¥ and, for every iy € ML,
either ¢ € ¥ or —p € ¥, but not both.

We are now ready to define the canonical frame.

Definition 4.11 The canonical frame Fop =
(U,Z) for @ is defined as follows. The universe U
consists of all maximally consistent extensions of
®, that is, by Lemma 4.10

U {¥ CML : ¥ is maximally consistent}.

For every R € R the accessibility relation is defined
by

T(R) € {(,) e U x U : ¥ C w3,
where UIH ' {4 : [R]¢) € T}. The truth valua-
tion is defined for every p € P by

Ip) & {VeU : pe v}

The following lemma is the hardest part of the
proof since it provides the required connection be-
tween the (syntactic) maximal consistent sets and
the (semantic) truth of a sentence. We again post-
pone the proof to the appendix.

Lemma 4.12 (Truth lemma) For every ¢ €
ML and every ¥ € U, we have 1y € ¥ if and only

if U=

The top-level proof is now almost complete. Ob-
serve that we have now constructed a frame Fg in
which every sentence in & is valid. (To see this,
note that & C ¥ holds for every ¥ € U by Lemma
4.10. So, every sentence in ® is true in ¥ by Lemma
4.12.) To complete the proof we must locate a state
¥ € U such that ¥ [~ ¢. Recall that we assume
® I/ ¢. So, it must be that {—¢} is consistent.
(Otherwise, @ F —(—¢), which is a contradiction to
the assumption ® I/ ¢ since —(—¢) — ¢ is a tau-
tology.) Let ¥ € U be an extension of {—¢} to
a maximal consistent set, which exists by Lemma
4.9 and Definition 4.11. By Lemma 4.12 we have
U = —¢, so ¥ [~ ¢, which completes the proof. H

Note the ingenuity in the construction of the
canonical frame. Based on the syntaz of the logic
and on the syntactic properties of the proof system,
it is possible to construct the desired semantic ob-
ject that allows us to refute semantic consequence
between the premises in ® and ¢.

The following corollary demonstrates a difference
between ML and ML that will become apparent
in the next section. Recall that a logic is called
compact if ® IF ¢ implies that there exists a finite
&' C & such that @' I+ ¢.

Corollary 4.13 (ML is compact) Let ® C ML
and suppose ¢ € ML. If ® I+ ¢, then there exists a
finite subset ®' C & such that ' IF ¢.

Proof. Because the deductive proof system for ML
is complete, ® I ¢ implies ® - ¢. Since a deriva-
tion is a finite sequence, it can use only a finite
number of premises from ®. Let ® C ® be a fi-
nite set that contains these premises. Then clearly,
@'+ ¢. Now, @' I ¢ follows by soundness. [|

5 Deductive proof system for
ML

In this section we modify the deductive proof sys-
tem for ML to handle the transitive closure oper-
ator of ML} .

Using the conventions from the previous section,
the deductive proof system for ML can be sum-
marized as follows:

(T)
(K)

(Propositional tautologies)
& (p = q) — (Rp > Kq))

(Rec) G*p— (pAKG*p)
(MP) p, (p—=q)taq
(N) pkXp
(Ind) (p— (¢AXp)) F (p = G"g)
We again allow arbitrary substitutions to the

atomic propositions to occur, only this time the
sentences that can be substituted are ML} sen-
tences instead of ML sentences.

Note that the proof system incorporates many
parts of the ML proof system. In fact, only ax-
ioms of type (Rec) and the deductive rule (Ind) are
new, since the operator X is simply an abbrevi-
ation for [<]. Axioms of type (Rec) capture the
idea that a property p being true in the present
state and all states “<”-reachable from the current
state has certain local implications. In particular,
p holds in the current state, and G*p must hold in
every “<”-successor state of the current state. The
inductive rule (Ind) on the other hand allows us to
conclude from the validity of (p — ¢ A Xp) that
q must be true in all states “<”-reachable from a
state in which p is true, that is, (p —» G*q). We
remark that this rule is somewhat nontrivial in the
sense that for arbitrary relations Z(<) C U x U it is
not immediately clear that such a deduction can be
made. This will be demonstrated in the soundness
proof.

5.1 Examples

Let us illustrate the ML} proof system by some
examples.

Example 5.1 Let ¢ be an arbitrary ML} sen-
tence and suppose that ® = {¢}. We derive G*¢
as follows:

1. ¢ (GP)

2. Xo¢ (1,N)

3. (= (Ko — (> (#AKP)))) ()

4. (Ko — (¢ — (# AK9))) (1,3,MP)
5. (9= (9 NK9)) (2,4,MP)
6. ¢ > G*¢ (5,Ind)
7. G*¢ (1,6,MP)

Example 5.2 Let ¢ be an arbitrary ML} sen-
tence and suppose that ® = {G*¢}. We derive
(p AN Ko A XRG*9) as follows:

1. G*¢ (GP)
2. (G*¢ = (p NKG*9)) (Rec)
3. (p ANXG*9) (1,2,MP)
4. (4 AKG*¢) = ¢) (T)
5. ¢ (3,4,MP)
6. Mo (5,N)
7. ®G*¢ (1,N)
8. ®XG*¢ (7,N)
9. (¢ = (Ko — (¢ NK9))) (T)
10. (X — (¢ A K)) (5,9,MP)
11. (¢ AR Q) (6,10,MP)
12. ((p A X)) — (RRG*¢p — (T)

(P AKPANRKG*9)))
13. (XXG*¢p — (p AN XKp ANKKG*¢)) (11,12,MP)
14. (¢ AN XKp A XKG*9) (8,13,MP)

5.2 Soundness and completeness

Theorem 5.3 The presented deductive proof sys-
tem for MLi" is sound.

Proof. Let & C MLiF be a set of premises and
let € ML}. We proceed as in Theorem 4.6 by
induction on the length of the derivation. Fix a
frame F = (U, Z) in which all the sentences in ® are
valid. The axioms of type (Rec) and the (Ind)-rule
are new, otherwise the proof is similar to Theorem
4.6.

We first prove that the (Rec) axioms (G*¢ —
(¢ N XG*¢)) are valid in F. Fix a Kripke model
M' = (U',T',w}) and suppose wy E G*¢. (If
wy = G*¢, then trivially wy = (G*¢ — (¢ A
X G*¢)).) By the semantics of G* we have w; = ¢
for every wy € U such that wj < wj. We must
show that w = ¢ ARG*¢. Clearly wj = ¢, so we
only have to establish wj = ®G*¢. If w{ has no
successors, then we are done; otherwise select any
wj € U such that wj < wj. Select a wh such that
w) < wh. Since < is the transitive closure of <,
we have wj < w). Consequently, wh |= ¢ because
wy E G*¢. Since wi and w) were arbitrary, we
must have wj = XG*¢.

We now turn to the deductive rule (Ind). Let
1,2 € MLT. Suppose that (¢ — (12 A X))
is valid on F. We have to prove that w = (¢1 —
G*yp) for all w € U. Select a w € U and sup-
pose that w |=1);. (The case w [~ 11 being again
trivial.) Now, select an arbitrary w' € U such
that w < w'. If we can establish w' = 19, then
clearly w |= G*12. The case w = w' is evident

since w = 1 and w | (Y1 = (Y2 A Kepyp)) by
validity. So, suppose w < w’. Since < is the tran-
sitive closure of <, there exists a finite sequence
w1, - .. ,w, € U such that wy = w, w, = w', and
w; < wiyr for all 4 1,...,n — 1. Now since
(Y1 — (2 A Happ)) is valid in F, we must have
w; E (Y1 = (Y2 AXRyy)) for all ¢ = 1,... ,n.
Starting from the assumption w; = 1, we may
now progressively conclude that w;y1 | 1 from
w; |= 11 by using the validity of (1 — (12 AKY1))
and the fact that w; < w;41. Thus, we must have
wp, = 1 and hence w, = w' = 5. []

We will next address the completeness of the pre-
sented deductive proof system, and start with a
seemingly unrelated observation. Namely, after in-
troduction of transitive closure the logic is no longer
compact as shown below:

Proposition 5.4 (Noncompactness of ML)
There exists a set of premises & C MLir and a
sentece ¢ € ML} such that ® IF ¢, but &' I ¢ for
every finite subset ®' C ®.

Proof. Select any p # q € P. Put

d={(p—o>X"q : neN}
and ¢ = (p —» G*q). Select any frame F = (U, 7)
that validates all sentences in ®. Let w € U, sup-
pose that w = p and select any w' € U such that
w < w'. If w = w, then trivially w = ¢ since
(p — ¢q) is a premise. So, suppose w < w'. Then,
there exist wy,...,w, € U such that w; = w,
wy, = w and w; < wiyy foralli =1,... ,n— 1
Now, since w = (p — X" 'q), we must have
w' |= ¢ and thus w = G*q. The task of construct-
ing for every finite ® C @ a model that invalidates
®' |- ¢ is left as an illustrative exercise for the
reader. (Hint: suppose p is true only in the initial
state.) [|
This noncompactness result has an important
corollary in the form of nonexistence of a strongly
complete and sound deductive proof system. In
particular, it is no longer possible to present a fi-
nite derivation (which naturally uses a finite num-
ber of premises) for every sentence ¢ semantically
entailed by an infinite set of premises ®. (Suppose
that this were possible. Then the noncompactness
would be contradicted by the soundness theorem
and the fact that a derivation uses only a finite
number of premises.)

10

Corollary 5.5 No sound deductive proof system
for ML} is strongly complete.

So, the strongest form of completeness that can be
achieved with a sound deductive proof system for
a noncompact logic is that every sentence semanti-
cally entailed by a finite set of premises is derivable
from these premises. This observation results in the
following definition.

Definition 5.6 A proof system is weakly complete
if & IF ¢ implies ® + ¢ for every finite set of
premises ®.

Settling for weak completeness eases our task
somewhat as the corollary of the following theorem
demonstrates.

Theorem 5.7 (Deduction theorem for ML'l")
Let ¢,9 € ML]. Then, ¥ I+ ¢ if and only if
F(G*y — ¢).

Proof. We consider the “if”-direction first. Sup-
pose IF (G*1) — ¢) and fix any frame F = (U,7)
such that F = ¢. Select any w € U. Obviously
w | G*1), so we must have w | ¢. Since F and w
were arbitrary, ¥ I+ ¢.

The “only if”-direction is next. Suppose ¥ IF ¢.
Fix any frame F = (U,Z), and consider any state
w € U. If w = G*9, then we are done. Otherwise,
suppose w = G*9. Let Uy, def {w'eU : w<w}.

Define F,, as the frame obtained by restricting F to

U, in other words, Fyy = (Us, Zo), where T, (p) <

Z(p) N U, for all p € P and
Tw(<) ¥ T(<) N Uy x Uy),

Tu(<) € 7(<) N (Uy x Uy).

We now claim without proof (the interested reader
is invited to verify this) that, for all ¢’ € ML],
(U, Z,w) =" if and only if (Uy,Zy,w) E 9¢'. So,
in particular (Uy,Zy,w) E G*¢. By definition of
U, this implies (Uy,Zy,w") = ¢ for all w' € U,.
Since 9 Ik ¢, we must thus have (Uy,Zy,,w) = ¢.
Consequently, (U,Z,w) |E ¢, which completes the
proof since F and w were arbitrary.]

Corollary 5.8 The presented deductive proof sys-
tem for ML} is weakly complete if and only if I ¢
implies F ¢.

Proof. The “only if” direction is trivial. For the
“if” direction, note that a frame validates all sen-
tences in & = {¢1,... , ¥} € ML} if and only if
it validates their conjunction ¥1 A --- Ap,. So, by
the deduction theorem we have {¢1,... ,¥m} IF ¢
if and only if IF (G*(¢¥1 A+ - -At,) — ¢). The latter
holds by assumption only if

F(G* (Y1 A Ahn) = ¢). 3)

Clearly, {¢1,...,¥n} F 91 A--- Ay, which com-
bined with the derivation in Example 5.1 yields

{Y1,...,n} F G*(¢1 A --- A ¢n). Now (3)
and the (MP) rule establish the desired conclusion

{1, ,¥m} @ [|

Theorem 5.9 The presented deductive proof sys-
tem for ML is weakly complete.

Proof. By Corollary 5.8 it suffices to show that
IF ¢ implies - ¢. We shall prove the contrapositive
claim I/ ¢ implies Iff ¢.

The proof is similar to that of Theorem 4.7. We
first construct a canonical frame for ¢ based on
syntactic notion of consistency, and then show that
it contains a state in which ¢ is false.

Definition 5.10 A set ¥ C ML is consistent if
there exists no finite subset {¢1,... ,%,} C ¥ such
that F = (1 A -+~ Aedy,).

Definition 5.11 Let ¢ € ML{. The set of ex-
tended subformulas of ¢, denoted ESF(¢), is the
minimal set of formulas that satisfies

1. ¢ € ESF(¢).

2. If (11 — 1py) € ESF(4), then 1y, s € ESF(¢).
3. If Xy € ESF(¢), then ¢ € ESF(¢).

4. If F*¢ € ESF(¢), then ¢, XF*y) € ESF(4).

It is easy to see that ESF(¢) is finite for every
¢ € ML. (A fixpoint iteration for ESF(¢) is as
follows. Starting from Xy = {¢}, iteratively ex-
pand X, to X,,1+1 by using (1-4) for every ¢ € X,,.
Terminate when X,, 11 = X,,.)

Definition 5.12 Let ® C ML;". A consistent set
U C & is ®-maximal if either » € ¥ or - € ¥ for
every ¢ € P.

11

Let ~ESF(¢) %' {— : 4 € ESF(¢)}.

Lemma 5.13 FEvery consistent set & C ESF(¢) U
-ESF(¢) can be extended to an ESF(¢)-mazimal
consistent set.

The proof of this lemma is analogous to that of
Lindenbaum’s Lemma (Lemma 4.9); the set of
premises ® is now empty, and instead of enumerat-
ing ML we enumerate only the finite set ESF(¢).

Definition 5.14 The canonical frame Fy = (U,I)
for ¢ is defined as follows. The universe U consists
of all ESF(¢)-maximal consistent sets. The succes-
sor relation is defined by

I(<) € {(To, Ty)

eUXU : ¥;XC¥,},
where T~X 4 {—¢ : X4 € ¥}. The interpreta-
tion of every p € P is defined by
I(p) €{WeU ::pe v}

Note that U is finite with at most 2/FSF(9)! ele-
ments. The following lemma is the heart of the
proof, however, due to its technicality and length
we postpone it to the appendix.

Lemma 5.15 (Truth lemma) Let ¢y € ESF(¢)
and suppose ¥ € U. Then, ¥ € U if and only if

My, ¥ = 9.

Recall that we assume I/ ¢. So, it must be that
{—¢} is consistent. (Otherwise F —(—¢), that is,
F ¢.) By Lemma 5.13 we can extend {—¢} to an
ESF(¢)-maximal consistent set ¥ € U. Since ¥ is
consistent, we have ¢ ¢ ¥, which implies Mg, ¥ £
¢ by the truth lemma. Consequently, My ~ ¢. B

The following corollary is easily extractible from
the completeness proof.

Corollary 5.16 (Finite model property) A
sentence ¢ € MLY is not universally valid if and
only if there exists a finite model M = (U,Z,w)
for which M ¥ ¢. Moreover, |U| < 2/ESF(#)],

Proof. The “if”-direction is trivial. The model re-
quired by the “only if”-direction is the canonical
frame augmented with a state w for which w (& ¢.
Such a state exists since the assumption I ¢ implies
t/ ¢ by the soundness theorem. |

6 Decision procedures

Now that we have shown that it is possible to char-
acterize semantic consequence using purely syntac-
tic tools, the next natural task is to automate the
decision process for semantic consequence.

Given the discussion around deductive proof sys-
tems in the previous sections, it is natural to ask
whether an algorithm could be constructed that
outputs a derivation of ¢ from the premises ® when
one exists. On the other hand, if a sentence is not
derivable, then the algorithm should output false.
If the underlying proof system is sound and com-
plete, then such an algorithm would correctly de-
cide semantic consequence. Unfortunately, there
are two major problems that make this approach
inapplicable.

First, assuming that a derivation exists, how can
we find one? For the ML and ML} proof sys-
tems it is possible to enumerate all derivations one
by one because the axioms and the deductive rules
are recursively enumerable® (naturally, we have to
assume that the premises as well are recursively
enumerable). However, the enumerative approach
is utterly ineffective in practice because no effective
search heuristics are known (as far as the present
author is aware).

Second, how is the algorithm to decide that a
derivation does not exist? This is a nontrivial prob-
lem. In fact, for some logics no such algorithm can
ezist, even though they have a sound and complete
proof system. These logics are called undecidable.
First-order predicate logic is the standard example
of such a logic (see e.g. [8]).

Undecidability arises easily in logic. If we al-
low arbitrary recursively enumerable (or recursive®)
premise sets over a countable P, then even proposi-
tional logic is undecidable. So, to keep matters sim-
ple and decidable, we shall restrict to finite premise
sets only.

The above discussion hopefully convinced the
reader that although deductive proof systems are
useful as theoretical constructs, they are not par-
ticularly well-suited for automation. Practical de-
cision algorithms are usually somewhere “in be-

5A set is recursively enumerable if there exists an algo-
rithm that outputs every element of the set at least once.

SA set is recursive if there exists an algorithm that out-
puts yes if its input is a member of the set and no if it is
not.

12

tween” the semantic and syntactic interpretations
of consequence. Typically the place to look for
ideas for such an algorithm is the completeness
proof.

Recall Corollary 5.16 of the ML;" completeness
proof from the previous section. Informally, it
states that a sentence is not universally valid pre-
cisely when there exists a finite model (whose size
can be upper-bounded by the structure of the sen-
tence) that demonstrates this. But this is just
what is required to produce a decision algorithm.
Namely, we can easily design an algorithm that ex-
haustively searches through all Kripke models” up
to the size bound, and decides according to whether
the falsifying model was found. By Corollary 5.8
this algorithm is sufficient to decide ML with fi-
nite sets of premises. Because of noncompactness,
this is in a sense the best we can hope for ML .

Not surprisingly, a similar decision algorithm
works for ML and finite sets of premises. Such
an algorithm is the topic of the next subsection.

6.1 Decision procedure for ML

In this section we present a procedure that allows
us to decide whether @ I ¢ for finite premise sets
® C ML. The procedure decides satisfiability of
¢ subject to the premises & by attempting to con-
struct a model for ¢ in which the premises are true
in every state. This can then be applied to settle
semantic consequence since ® IF ¢ holds if and
only if ¢ is unsatisfiable subject to the premises ®.

The algorithm proceeds top-down. Starting from
a large frame that is guaranteed to contain a sat-
isfying model (if one exists), the algorithm deletes
from the frame states and arcs that cannot con-
tribute to a satisfying model. When no further
deletions can be performed, the algorithm checks
whether the frame contains a state in which ¢ is
true, and returns accordingly either “satisfiable” or
“unsatisfiable.”

The states in the initial frame consist of all
propositionally consistent sets.

Definition 6.1 Denote by SF the set of all subfor-
mulas of the sentences in ®U{¢}. A subset w C SF
is propositionally consistent if

"We naturally have to restrict the set of atomic proposi-
tions to those that occur in ¢.

1. L ¢ w; and
2. if (1p1 — 1) € SF, then (11 — 1) € w if and
only if ¢ ¢ w or ¢ € w.

A sentence ¢ € SF is a modal formula if it is of the
form ¢ = (R)1 or ¢ = (R)4, for some R € R and
i1 € SF.

Example 6.2 Let ® U {¢} = {(R)((R)p — q)}
Then

SF = {{R)((R)p — q), ((R)p — q), (R)p, p, q}-

The modal formulas in SF are (R)((R)p — ¢) and
(R)p. The propositionally consistent subsets of SF
are

L {p, ¢, (R)p, (R)((R)p —q), (R)p— q)}
2. {p, ¢, (R)p, (R)p— q)}

3. {p, ¢, (R)(R)p—q), (R)p — q)}

4. {p, ¢, (R)p— q)}

5 {p, (R)p, (R)((R)p— q)}

6. {p, (R)p}

7. {p, (R)((R)p = q), ((R)p—q)}

8 {p, (R)p— q)}

9. {qg, (R)p, (R)(R)p— q), ((R)p = q)}
10. {g, (R)p, (R)p—q)}

11. {q, (R)(R)p = @), (R)p = q)}

12. {q, ,(R)p—)}

13. {(R)p, (R)((R)p = q)}

14. {(R)p}

15. {(R)(R)p — q), ((R)p = q)}

16. {{(R)p—q)}

Observe that all 2¢ = 16 combinations of the modal
formulas {(R)({(R)p — ¢q), (R)p} and the atomic
propositions {p, ¢} occur in the propositionally
consistent sets.

Propositionally consistent sets are “consistent for
propositional logic” in the sense that once the
modal formulas and the atomic propositions that
appear in a propositionally consistent set are fixed,
then the other formulas in the set are uniquely de-
termined. Namely, a propositionally consistent set
w C SF consists of precisely the sentences in SF
that are true in a Kripke model that satisfies

1. for every atomic proposition p € SF, w €
Z(p) if and only if p € w; and

2. for every modal formula ¢ € SF, w |= ¢ if and
only if ¢ € w.

13

(In some cases such a Kripke model may not ex-
ist because the modal formulas specify constraints
that are impossible to meet in a model, e.g.
{(R)p,~(R)p}.)

The following is a step by step description of the
algorithm:

1. Construct the set SF of subformulas of ®U{¢}.

2. Let

U={wCSF : wisp. consist. and & C w}.

Put Z(R) = U x U for every R € R that ap-
pears in SF.

PutZ(p) ={w e U : pew}foreverype P
that appears in SF.)

Delete bad states and arcs from (U,Z) until
none exist.

o A state w € U is bad if there exists a
(R)Y € SF such that (R)y € w, but for
every (w,w') € Z(R) it holds that ¢ ¢ w'.

e An arc (w,w') € Z(R) is bad if there ex-
ists a (R)¢ € SF such that (R)¢ ¢ w but
P e w'.

If the resulting frame (U, Z) contains a state w
with ¢ € w, then output “satisfiable”; other-
wise output “unsatisfiable.”

Step 4 is not necessary for correct operation of
the algorithm. We include it since it completes the
partial structure (U,Z) to a satisfying frame. The
following theorem demonstrates the correctness of
the algorithm.

Theorem 6.3 Let ® C ML be a finite set and sup-
pose ¢ € ML. Then, the presented ML decision
procedure outputs “satisfiable” on input @, ¢ if and
only if there exists a frame F = (U,7) with (a)
F = ®; and (b) there exists a wo € U such that
(UJ I) ’LU()) IZ ¢

Proof. We start with the “only if” direction. Sup-
pose that F = (U,Z) is the frame that remains
after all the deletions have been performed, and let
wo € U be a state that satisfies ¢ € wg. (Such

a state exists since the algorithm outputs “satisfi-
able.”) It can now be shown by induction that F
satisfies

w = if and only if ¢ € w, 4)
for every ¢ € SF. The atomic propositions in
SF form the base case, which holds by assump-
tion (that is, Step 4 in the algorithm description).
Since every w € U is propostitionally consistent,
the claim must also hold for sentences of the form
(1 — 12) € SF. We analyze the modal formu-
las in more detail. Fix (R)y € SF and suppose
w | (R)Y. Then there exists a w' € U such that
w' = 9. By the induction hypothesis we thus have
¥ € w'. So, (R)Y € w, because otherwise the arc
(w,w") € Z(R) would be bad, which is impossible
since all bad arcs are deleted from F. For the other
direction, suppose (R)y) € w. Then there must ex-
ist a w' € U such that (w,w') € Z(R) and ¢ € ',
because otherwise the state w would be bad, which
is impossible. We conclude w' |= ¢ by the induc-
tion hypothesis, so w = (R)t. The frame F now
satisfies F = ® since & C w for every w € U by
construction. Furthermore, (4) implies wq = ¢.

Next is the “if” direction. Let F = (U,Z)
the frame that satisfies F = ® and (U,Z,wy) |
Select any w € U, and define

be
@.

= def
w= (Y € SF : w v},
that is, w= consists of the sentences in SF that are
true in w. The set w= is propositionally consistent

by construction. Now define Z= by setting

7=(p)
I=(R) € {(w=,v'7) :

def

{w= : pew=},
(w,w') € Z(R)}

for all atomic propositions p € SF. The interpreta-
tions of the atomic propositions p € SF agree with
the initial frame in the decision procedure. More-

over, & C w= for all w € U. Thus, the frame

F=4 (U=,7Z7) is a subframe of the initial frame

in the decision procedure. Furthermore, it is easy
to verify that 7= contains no bad states nor arcs.
Therefore, F= is a subframe of the frame that re-
sults when all bad states and arcs are deleted from
the initial frame built from input ®,¢. Because
¢ € wg, the decision procedure will output “satis-
fiable.” [|

14

6.2 Decision procedure for ML

The decision procedure for ML from the previ-
ous section admits straightforward extension to the
transitive closure operator of ML;. There are two
modifications. First, instead of the subformulas SF
of ® U {¢} we consider the extended subformulas
ESF of ® U {¢}. (Recall from Definition 5.11 that
XF*y is an extended subformula of F*1.)

Example 6.4 Let

®U{¢} ={((pVXF*p) = F*p)}.

Expanding the syntactic abbreviations, we obtain

2U{g}={((lp = L) » XF"p) = F'p)}.
The extended subformulas of ® U {¢} are:

ESF = {p, XF*p, F*p, 1,
(p— 1), (p— 1) = XFp),
(((p— L) = XF*p) — F*p)}

The propositionally consistent subsets of ESF are:

L. {({((p—= L) = XF*p) = F*p),
((p— 1) = XF*p), (p— 1),
XF*p, F*p },

2. {(((p = L) = XF*p) - F*p),
((p— L) = XF*p), p,
XF*p, F*p },

3. {(lp—=1)—=XF*p), (p— 1),
XF*p },

4. {((p— 1) = XF*p), p,

XF*p },

5 {(((p = L) = XF*p) - F*p),
(p— 1), F*p },

6. {(((p— L) XF*p) = F*p),
((p— 1) = XF*p), p, F*p },

7. {({((p— L) = XF*p) - F*p),
r—1) 1

8 {((p—1L1)—XFp), p}

The second change is that the rules that determine
which states and arcs are bad have to be modified
to take into account the transitive closure operator
F*. More specifically:

e An arc (w,w') € (<) is bad if

1. X¢ ¢ w but ¢ € w'; or

2. F*¢ ¢ w but F*¢ € w'.
e A state w € U is bad if

1. X¢p € w but ¢ ¢ w' for all w' € U such

that (w,w') € Z(<); or
2. F*¢ ¢ w but ¢ € w; or

3. F*¢) € w but ¢ ¢ w and ¢ ¢ w' for every
w' € U such that (w,w') € Z(<)™.

For the correctness proof of the algorithm (and
an extension to CTL) we follow [1] and point the
reader to [4, 5].

6.3 Decision procedures for natural
models

The decision procedures for ML and ML} pre-
sented in the two previous subsections decide sat-
isfiability with respect to the class of all Kripke
models. There is a drawback in such generality,
namely the algorithms require exponential time and
space with respect to the number of distinct atomic
propositions and modal formulas in (E)SF (cf. Ex-
amples 6.2 and 6.4). What is even worse, the space
requirement is always exponential, even though the
frame that results after all deletions have been per-
formed might be small in comparison.

There are at least two ways to alleviate the space
and time requirements of the decision algorithms.

The first approach is to perform the search
bottom-up instead of top-down. That is, instead
of starting from the large frame and deleting un-
necessary states and arcs, we start from an empty
frame and attempt to complete it to a satisfying
model by addition of states and arcs. Although the
worst-case behaviour may still be exponential, this
need not always be the case. The problem with the
bottom-up approach for arbitrary models is that it
is hard to determine which states should be added
to the frame, and in particular how the accessibility
relation(s) should be updated to produce a satisfy-
ing model in the end.

The second approach is to restrict the class of
models considered. For example, linear time logics
operate on the class of natural models, which are
sequences of states.

Definition 6.5 A Kripke model M = (U,Z,wq)
for ML is a natural model if

15

(i) for each state w € U there exists at most one
w' € U such that w < w'; and

(ii) for each state w € U there exists at most one
w' € U such that w' < w; and

(iii) there exists no w' € U such that w' < wy.

(iv) for every distinct w,w' € U, either w < w' or
w' <w.

(Observe that restricting to natural models also
forces us to restrict to monomodal logic.) Re-
stricting to natural models immediately reduces the
number of arcs that need to be stored and manip-
ulated from quadratic to linear in the number of
states (which is in general exponential in the size
of the input formula). In fact, no arcs need to be
explicitly stored since a sequence of states implic-
itly encodes the successor relation for natural mod-
els: the next state in the sequence is the successor
state of the present state. This property makes de-
ciding satisfiability with respect to natural models
well-suited for a bottom-up backtrack search im-
plementation.

To illustrate such an algorithm, we consider for
simplicity the fragment of ML that does not con-
tain the transitive closure operator F*, that is, X
and its dual X are the only modal operators al-
lowed.

Let ® be a set of premises and let ¢ be the sen-
tence whose satisfiability is to be decided with re-
spect to ® and natural models.

The decision algorithm is a two-stage backtrack
search. The first stage considers all possibilities
for the initial state wg, that is, all propositionally
consistent sets wo C SF that satisfy (a) ® C wq
and (b) ¢ € wo. The second stage attempts to
complete the initial state wg to a natural model
by recursively extending the input state w; to a
successor state w;y1 so that all future obligations
in the input state are met. These are:

1. Positive future obligations: 1 € w;y; for all

sentences X € w;.

2. Negative future obligations: ¢ ¢ w;t1 for all
sentences ~ X1 € w;.

3. Premises: ® C w;y1.

4. Consistency: w;y1 must be propositionally

consistent.

If for input w; the obligations cannot be met, then
the algorithm backtracks from level ¢ + 1 to level ¢
and considers the next possible w;. There are two
successful termination conditions. The first is that
the input w; contains no future obligations. Then
the sequence (wyp,...,w;) is a satisfying model if
we put Z(p) = {w; : p € w;} for all atomic propo-
sitions p € SF. The second condition occurs when
the constructed w;y1 satisfies w; = w;41 for some
j <i. Then the infinite sequence
(wo, N ,11)]'_1)] (’11]]', [N ,wi)w

is a satisfying model.

The algorithm terminates always because the
number of propostionally consistent subsets of SF
is finite. Thus, either a successful termination con-
dition is reached at some point of the search, or
the algorithm terminates unsuccessfully because all
propositionally consistent initial states were consid-
ered, and no satisfying extension to a natural model
was found.

7 Tableau methods for natu-
ral models

Tableau methods provide an alternative decision
method for modal logics [6] and temporal logics [9].
In this section we sketch a tableau-based deci-
sion procedure for ML} and natural models. The
treatment is rather succinct; we refer the reader un-
familiar with tableau methods in logic to standard
textbooks on computational logic (e.g. [2, 7]).

Definition 7.1 An ML -tableau is a rooted tree
whose nodes are subsets of ML} sentences; each of
the sentences is prefixed either with the symbol T
or the symbol F.® The root node of a tableau may
be arbitrary, but it is required that the children of
each node (if any) are constructed according to the
tableau rules given below.

The tableau rules are as follows. A sentence of

81ntuitively, the prefixes T and F indicate that the sen-
tence is forced to be true or false, respectively, in the present
node. The tableau rules take care of propositional consis-
tency and consistency of modal formulas between states.
(E.g. rule (8) enforces the future obligations; recall the pre-
vious section.)

16

the form (11 — 12) is expanded using the rules

L, T = 1) L, F(¢1 = 1)
F; le | F7 T¢2, F7 T¢17 F¢2 '

The sentences above the horizontal line indicate the
content of the parent node, and the sentences be-
low the horizontal line indicate the sentences in the
child node(s). A vertical bar “|” separates multiple
child nodes. The symbol I' denotes all the other
prefixed sentences in the particular tableau node.
Contradictory nodes are closed by the following
rules. The symbol “s” indicates that the tableau
node is closed and cannot be expanded further.

'y Fp, Ty T, TL T, FL (6)
* ’ ’ r

A sentence of the form F*1 is expanded using
the rules:

()

*

T, TF*y
| T, TXF*’

All sentences of the form Xt are expanded at
once using the rules

F, TX(PI;--- ,TX(pn, FX’gbl, ,FX'lﬁm
Tq), T(pl,... ,T(pny F¢17"' 7F¢m

T, FF*y
T, Fy FXF*)

T 7o (7)

(8)
and
9)

where ® is the set of global premises (each of which
prefixed with the symbol T). If rule (9) is applied,
then the node is open and cannot be expanded fur-
ther.

The applicability of rules (8) and (9) is restricted
as follows:

?

e Rules (8) and (9) are applicable only if none of
the rules (5)—(7) can be applied. For example,
if a node contains the sentence F(¢1 — 1),
then neither (8) nor (9) is applicable since rule
(5) is applicable.

If the above condition holds, then rule (8) is
applicable only if the parent node contains a
sentence of the form TX; otherwise rule (9)
must be applied.

When rule (8) is applied, it is required that
I" contains no sentences of the form TX¢p or
FX1.

Definition 7.2 A tableau node is looping if it (a)
has no children and (b) is a subset of a node that
occurs on the path to the root node (that includes
the root node). A tableau is completed if every leaf
node is either closed, open, or looping.

A loop graph of a completed tableau is a directed
graph that results if the looping nodes are identified
with a node that induces the looping condition. A
strongly connected component (SCC) in the loop
graph is self-fulfilling if for every sentence TF*v
that occurs in a node of the SCC there exists a
node in the SCC that contains the sentence T.

Definition 7.3 A completed tableau is successful
if (a) it contains an open leaf node or (b) there
exists a looping node whose SCC is self-fulfilling in
a loop graph of the tableau.

We state the following correctness theorem with-
out proof.

Theorem 7.4 Let & C ML;r be a finite set of
premises and suppose ¢ € MLf. Then, ¢ is satis-
fiable subject to the premises ® in the class of nat-
ural models if and only if there exists a successful
tableau whose root node is T® U {To}. (Moreover,
if there exists a successful tableau, then every com-
pleted tableau is successful.)

References

[1] E. Clarke and B.-H. Schlingloff. Model
Checking. Chapter 24 in Volume 2 of Hand-
book of Automated Reasoning (A. Robinson
and A. Voronkov, eds.), pages 1689-1711, El-
sevier Science Publishers, 2001.

[2] M. Ben-Ari. Mathematical Logic for Com-

puter Science, 2nd Editition. Springer-

Verlag, London, 2000.

[3] P. Blackburn, M. de Rijke and Y. Venema.

Modal Logic. Cambridge University Press,

Cambridge, England, 2001.

[4] E. A. Emerson and A. P. Sistla. Deciding full

branching time logic. Inform. and Control 61

(1984) no. 3, 175-201.

17

[5] E. A. Emerson. Temporal and modal logic.
Chapter 16 in Volume B of Handbook of The-
oretical Computer Science (J. van Leeuwen,
ed.), pages 997-1072, Elsevier Science Pub-
lishers, 1990.

[6] M. Fitting. Proof Methods for Modal and In-

tuitionistic Logics. D. Reidel Publishing Co.,

Boston, Massachusetts, 1983.

[7] A. Nerode and R. A. Shore. Logic for Ap-

plications, 2nd Edition. Springer-Verlag, New

York, 1997.
[8] C. Papadimitriou. Computational Com-
plerity. Addison-Wesley, Reading, Mas-

sachusetts, 1994.
[9] P. Wolper, The tableau method for temporal
logic: An overview. Logique et Anal. (N.S.)
28 (1985) no. 110-111, 119-136.

A Appendix

This appendix contains proofs of the lemmata
stated but not proven in the main text.

A.1 Proof of Lemma 4.9

Recall that we assumed that the sets P and R are
at most countable. Consequently, the set ML is
countable. Fix an enumeration ¢q,¢s,¢s,... of
ML and define, for all : =1,2,...

Y

def

A =0,
A, def A;U{si} if A;U{¢;} is consitent;
1T AjU{—¢} otherwise,
AE A
i=1

We will show that A is a maximally consistent set
if ¥ is consistent. First, we establish by induction
that every A; is consistent. The base case i = 1
is true by assumption. For the inductive step, sup-
pose that A; is consistent. If A;;1 is inconsistent,
then A; U {¢;} is inconsistent and A;1; = A; U
{—¢;}. Since A; is consistent, we have both ® F
(G A AL AG:) and B F (b A AP, A=),

where {¢],. .. ,¢:+,¢1_,... ,¢,-} € Aj. By com-
bining the two derivations we obtain

SF(¢F A AL AGT A AG)

and hence A; is inconsistent contrary to our as-
sumption. Thus, A;; must be consistent.

The union A is consistent since every finite sub-
set of A is a finite subset of some A;, which is
consistent. To see that A is maximal, suppose
that A U {¢r} is consistent. Then, since every
subset of a consistent set is consistent, we have
that Ap U {ér} C AU {¢r} is consistent. Thus,
Agy1 = Ay U {¢r} by definition. Consequently,
¢r € Apg1 C A,

A.2 Proof of Lemma 4.10

Fix a maximal consistent set ¥ C ML. Suppose
that ¢ € ® but ¢ ¢ ¥. Then TU{+} is inconsistent
and ® F (1A - AP AY) for some {1, ... ,9n} C
¥. But since ¥ € ®, we have ® - (1 A--- Ay,),
which is a contradiction since ¥ is consistent.

Suppose that both ¢,) ¢ ¥. Then, by maxi-
mality of ¥, both $U{¢} and $U{—)} are inconsis-
tent. Consequently, we have both ® F =(y A--- A
1/’;:+ A) and @ F =(¢p A--- Atp_ A1), where
{¢r7 s 7¢:+}7 {7¢;7 s sz;—} g v By combin-
ing the two derivations we obtain

b A AT AYT A AY),

which is a contradiction to the assumption that ¥
was consistent. On the other hand, v, € ¥ is
also impossible since —=(¢¥) A =) is a propositional
tautology.

A.3 A technical lemma

The following lemma facilitating the consistent ex-
tension of a set is required in the proof of Lemma
4.12.

Lemma A.1 Let ¥ C ML be a consistent set, and
suppose that R € R and —[R]¢ € V. Then, the set
UE U (¢} is consistent.

Proof. Let ¥ C ML be a consistent set, and let
R € R and —[R]¢ € ¥. Suppose that W U {-4}
is inconsistent. Then ® F = (1 A--- A1)y,) for some
{¢1,...,¢,} C TEI U {-4}. Without loss of gen-
erality we may assume ® b —(y1 A -+ Ay, A —¢)

18

since =A — —(A A B) is a propositional tautology.
Continuing the derivation, we obtain

L =1 A A Ag)

2. YL A Aty = & (1,T,MP)
3. [Rlr A--- A [RlYn — [R] (2,GR)

4. —([R]1 A--- N [RlYn A-[R]$) (4,T,MP),

which is a contradiction since ¥ is consistent. W

A.4 Proof of Lemma 4.12

Fix ¢ € ML and a maximal consistent set ¥ € U.
We proceed by induction in the structure of .

First, L ¢ ¥ because otherwise ¥ would be in-
consistent as - is a propositional tautology. For
the other base case, let ¢ = p € P. Then by Defi-
nition 4.11, Mg, ¥ |= p if and only if p € V.

Let ¢» = (1)1 — 12). By the induction hypothesis
we have to establish that (¢1 — ¥2) ¢ ¥ if and only
if 1 € ¥ and 12 ¢ . We prove first the “only if”
direction. Suppose (1 — 12) ¢ ¥. By Lemma
4.10 we then have ¥; A =)o € ¥. But then both
—p1 € ¥ and v, € ¥ are impossible since —(¢1 A
—hy A —p1) and —(y1 A —ha A 9hy) are prositional
tautologies (and hence, ¥ would be inconsistent if
either of the sentences —);, ¥ were in ¥). So, we
must have ¢, € ¥ and 15 ¢ ¥ by Lemma 4.10. The
“if” direction follows similarly using Lemma 4.10
and the observation that —(1)1 A =2 A (1 — 12))
is a propositional tautology.

We prove the ¢ = (R)1); case using the dual op-
erator [R] and ¢ = [R]¢1. (Then the ¢p = (R)y
case follows from (R)¢1 = (([R]¢1) — L) — L and
the induction hypothesis.) We first prove the “only
if” direction. Suppose [R]y1 € ¥. For every ¥; €
U such that (¥, ¥;) € Z(R) we have ¥l C ¥, by
Definition 4.11. Thus, ¥; € ¥q, and My, ¥ = ¢4
by the induction hypothesis. Since ¥; was arbi-
trary, My, ¥ |= [R]¢1. We prove the “if” direction
using the contrapositive form [R]y; ¢ ¥ implies
Mg, U [£ [R]p1. Suppose [R]yp; ¢ ¥. Then, by
Lemma 4.10 =[R]y1 € ¥. Consequently, Lemma
A.1 applies, and the set ¥[El U {—);} is consis-
tent. Let ¥; be a maximal consistent extension of
Wl U {—4;}. By Definition 4.11 we have ¥, € U
and (¥, ¥,) € Z(R). Furthermore, since =), € ¥y,
we have by Lemma 4.10 and the induction hypoth-
esis Mg, U1 j~ 1. Consequently, Mg, ¥ (= [R]y;.

A.5 Proof of Lemma 5.15

Fix an ESF(¢)-maximal consistent set ¥ € U and
let ¢ € ESF(¢). We proceed by induction on the
structure of 1.

The proofs of the base cases and the case ¢ =
(11 — 1p2) are similar to the proof of Lemma 4.12.
(Note that the “either-or” conclusion of Lemma
4.10 is built into Definition 5.12.)

Suppose that ¥ = Xy € ESF(¢). We have to
show that X¢; € ¥ if and only if My, ¥ = X);.
We prove the “if” direction first. Suppose that
My, ¥ = Xt¢p1. Then there exists a ¥; € U
such that ¥ < ¥; and My, ¥; = 9. Clearly,
11 € ESF(¢), so we thus have ¥, € ¥y by the
induction hypothesis. To reach a contradiction,
suppose that Xi¢; ¢ ¥. Then =Xy € ¥ by
maximality of ¥. By definition of Z(<) we thus
have —); € ¥y, which is a contradiction. In the
“only if” direction, suppose that Xy, € ¥. We

have to locate a ¥; € U such that ¥ < ¥; and
def

Moy, ¥ E 1. Let Z = {1} U{=€ : ~X{€ T},
removing double negations if necessary so that each
—¢ € ESF(¢) U-ESF(¢). With the aim of applying
Lemma, 5.13 to extend Z to a suitable ¥y, we first
establish that Z is consistent. Suppose that Z is in-
consistent. Then, there exist {=&1,... , &, 1} C
Z such that = =(=& A- - - A&, A1), or equivalently,
F& V---VE, V. (This latter form shows that
we may without loss of generality include ¢; in the
set inducing the inconsistency.) An application of
the (N) rule gives - B (& V---VE, V1), or equiv-
alently, - =X (=& A -+ A =&, A1)1). We have

F((-X& A A=XE AXr) —
X(=€L Ao A= A1)

(the derivation is left as an exercise to the reader).
Taking the contrapositive of (10) and applying the
(MP) rule, we obtain F —(=X& A---A—=XE,AXY),
which is a contradiction since ¥ is consistent. So,
Z must be consistent. Since ¥ is ESF(¢)-maximal
and ¢, € ESF(¢), we have Z C ESF(¢)U-ESF(¢).
Consequently, Z satisfies the conditions of Lemma
5.13. Let ¥; € U be a ESF(¢)-maximal consistent
extension of Z. We have ¥ < ¥; by definition of
Z(<). Furthermore, since ¢; € Z C ¥; € U and
11 € ESF(¢), we have by the induction hypothesis
Mg, ¥ =,

Suppose that ¥ = F*i); € ESF(¢). We prove
first the “if” direction using the contrapositive form

(10)

19

F*i; ¢ ¥ implies My, T = F*¢;. Suppose that
F*1, ¢ ¥. We have to show that Mgy, ¥' & o
for all ¥ < ¥/ € U. Select any ¥’ € U such that
¥ < U'. By definition of transitive closure there
exists a sequence of states ¥q,... , ¥, such that

=0, <---<¥, =T,

We prove by induction on n that F*iy; ¢ ¥,
for all n > 1. The base case n = 1 is trivial
since we assume F*i; ¢ ¥. For the inductive
step, suppose that F*¢; ¢ ¥, ;. By maximal-
ity of ¥,,_; we have -F*i; € ¥, ;. By defini-
tion of ESF(¢) we have XF*y; € ESF(¢), so ei-
ther XF*y; € ¥,, 1 or - XF*y; € ¥,, | by max-
imality of ¥,,_;. The former case is impossible
since ¥,,_; is consistent and - —(=F*y, A XF*y).
(The derivation is left as an exercise to the reader.)
Thus, - XF*i, € ¥,_1. Let ¥, be any state
such that ¥,,_; < ¥,. By definition of Z(<) we
have =F*¢; € ¥,, because - XF*¢;, € ¥,,_;. So,
F*yy ¢ ¥, by consistency of ¥,. This completes
the inductive step. We now have F*¢; ¢ ¥’ for all
¥ < ¥'. Since 91 € ESF(¢) and F —(=F*y; Ay),
we must have —); € ¥’ by consistency and max-
imality of ¥'. Therefore My, ¥’ = 41 by the
induction hypothesis, and since ¥’ was arbitrary,
My, ¥ [~ F*1py. The “only if” direction (in con-
trapositive form Mg, ¥ = F*¢; implies F*1), ¢)
is the most involved part of the proof and requires
additional notation for convenient exposition. Re-
call that any ESF(¢)-maximal consistent set ¥ € U
is finite and consists of exactly |[ESF(¢)| sentences.

We denote by ¥ the conjuction of all sentences

in ¥, that is, . def SIARERNA g\ESF((i))\) where

U = {&,...,&Esr(g)|}- Similarly, the set U is fi-
nite with at most 21FSF(#)| elements. So, any subset
W ={¥y,...,%,} CU is finite. ‘We denote by W

the disjunction of the sentences ¥y, - - - ,\ilm, that

is, W def lill V- -Vlilm. Armed with this additional

notation we now continue the proof. Suppose that
Mgy, ¥ = F*1py and define

Ty € {¥eU : ¥ <V},

that is, Ty is the set of all ¥’ € U reachable from
¥. By My, ¥ = F*y; we thus have My, ' |~ oy
for all ¥/ € Ty. Since 9; € ESF(¢), the induction
hypothesis now implies 1 ¢ ¥’ for all ¥’ € Ty.
By maximality of ¥' we must have —); € ¥'. So,

F —(1y A 8", or equivalently, - (&' — —y) for all
¥’ € Ty. Consequently,

Suppose for the moment that
F (Ty — XTy). (12)

(We will justify this claim at the end of the proof.)
Derivations (11) and (12) can clearly be combined
to yield

- (Tq/ — —|1ﬁ1 A E&T\p)

So, an application of the (Ind) rule gives - (Ty —
GA*ﬂwl). Since ¥ € Ty, we obviously have F
(¥ — Ty). Combining the two derivations, we get
F (& — G*—y), or equivalently, - —(¥ A F*4);).
Since ¥ is consistent, we must have F*i; ¢ 0.

The proof is now otherwise complete, but we still
have to justify (12). Define

Se E{¥eU : ¥},

that is, Sy is the set of all immediate successors of
¥. We will first establish

F (U — XSy), (13)

which we will then extend to (12). Clearly,
F ((Mé-l /\"'/\xgm) - BG-(é-l /\"'/\gm))a

SO0 we have

(o R(N\{-¢ - "XEe W), (14)
Furthermore, I—v(\i! — XU) holds since - U holds.
(To see that F U, observe that

Z € \/{M : M is ESF(¢)-maximal}

is obtained by substitution from a propositional
tautology. The inconsistent ESF(¢)-maximal sets
can now be removed from Z using their inconsis-
tency derivations in conjunction with suitable sen-
tences derived from propositional tautologies and
the (MP) rule. This results in a derivation for U;
details are left as an exercise to the reader.) Com-
bining (14) and - (¥ — X¥U), we obtain

(o RO AN{E : -XE e TY),

20

from which (13) can be derived by dropping the
conjunctions in U that conflict with A{-¢
-X¢ € U}; details are left to the reader. From
(13) we obtain

F (Verer, ¥') = (Vorer, ®Sw)),

which implies

F(Vorery ¥') = B(Varery Sw)). (15)
Since Uy, Sur C Ty, we have
= (Vq;leT‘I,Sqﬂ) — Tq; (16)

Combining (15) and (16), we finally obtain (12).

